Abstract
A negative solution to Hilbert’s tenth problem for the ring of integers OF of a number field F would follow if Z were Diophantine in OF. Denef and Lipshitz conjectured that the latter occurs for every number field F. In this note we show that the conjecture of Denef and Lipshitz is a consequence of a well-known conjecture on elliptic surfaces.
References
B. Conrad, K. Conrad, H. Helfgott, Root numbers and ranks in positive characteristic, Adv. Math. 198(2005), no. 2, 684-731. Doi: 10.48550/arXiv.math/0408153
G. Cornelissen, T. Pheidas, K. Zahidi, Division-ample sets and the Diophantine problem for rings of integers, J. Théor. Nombres Bordeaux 17(2005), no. 3, 727-735. Doi: 10.5802/jtnb.516
M. Davis, H. Putnam, J. Robinson, The decision problem for exponential diophantine equations, Ann. of Math (2) 74(1961), no. 3, 425-436. Doi: 10.2307/1970289
J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48(1975), no. 1, 214-220. Doi: 10.2307/2040720
J. Denef, Diophantine sets over algebraic integer rings II, Trans. Amer. Math. Soc. 257(1980), no. 1, 227-236. Doi: 10.2307/1998133
J. Denef, L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18(1978), no. 3, 385-391. Doi: 10.1112/jlms/s2- 18.3.385
N. Garcia-Fritz, H. Pasten, Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points. Math. Ann. 377(2020), no. 3-4, 989-1013. Doi: 10.1007/s00208-020-01991-w
D. Kundu, A. Lei, F. Sprung, Studying Hilbert’s 10th problem via explicit elliptic curves, arXiv: 2207.07021(2022). Doi: 10.48550/arXiv.2207.07021
S. Lang, A. Néron, Rational points of abelian varieties over function fields, Amer. J. Math. 81(1959), no.1, 95-118. Doi: 10.2307/2372851
Y. Matiyasevich, The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR 191(1970), no. 2, 279-282.
B. Mazur, K. Rubin, Ranks of twists of elliptic curves and Hilbert’s tenth problem. Invent. Math. 181(2010), no. 3, 541-575. Doi: 10.1007/s00222- 010-0252-0
B. Mazur, K. Rubin, Diophantine stability, With an appendix by Michael Larsen. Amer. J. Math. 140(2018), no. 3, 571-616. Doi: 10.1353/ajm.2018.0014
B. Mazur, K. Rubin, A. Shlapentokh, Existential definability and Diophantine stability, arXiv: 2208.09963 (2022), Doi: 10.48550/arXiv.2208.09963
M. Murty, H. Pasten, Elliptic curves, L-functions, and Hilbert’s tenth problem. J. Number Theory 182(2018), 1-18. Doi: 10.1016/j.jnt.2017.07.008
A. Néron, Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe algébrique dans un corps. Bull. Soc. Math. France 80(1952), 101-166. Doi: 10.24033/bsmf.1427
T. Pheidas, Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Amer. Math. Soc. 104(1988), no. 2, 611-620. Doi: 10.2307/2047021
B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers. Fieker, Claus and Kohel, David R (Eds.), Algorithmic Number Theory, Sidney, 2002, 33-42. Doi: 10.1007/3-540-45455-1_4
A. Ray, Remarks on Hilbert’s tenth problem and the Iwasawa theory of elliptic curves, Bulletin of the Australian Mathematical Society Society (2022), 1-11 Doi: 10.1017/S000497272200082X
C. Salgado, On the rank of the fibers of rational elliptic surfaces, Algebra Number Theory 6(2012), no. 7, 1289-1314. Doi: 10.2140/ant.2012.6.1289
C. Schwartz, An elliptic surface of Mordell-Weil rank 8 over the rational numbers, J. Théor. Nombres Bordeaux 6(1994) , no. 1, 1-8. Available from: http://www.numdam.org/item/JTNB_1994__6_1_1_0.pdf [21] H. Shapiro, A. Shlapentokh, Diophantine relationships between algebraic number fields, Comm. Pure Appl. Math. 42(1989), no. 8, 1113-1122. Doi: 10.1002/cpa.3160420805
A. Shlapentokh, Extension of Hilbert’s tenth problem to some algebraic number fields. Comm. Pure Appl. Math. 42(1989) , no. 7, 939-962. Doi: 10.1002/cpa.3160420703
A. Shlapentokh, Elliptic curves retaining their rank in finite extensions and Hilbert’s tenth problem for rings of algebraic numbers, Trans. Amer. Math. Soc. 360(2008), no. 7, 3541-3555. Doi: 10.1090/S0002-9947-08-04302-X
J. Silverman, Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math 342(1983), 197-211. Doi: 10.1515/crll.1983.342.197
C. Videla, (1989). Sobre el décimo problema de Hilbert, Atas da Xa Escola de Algebra, Vitoria, ES, Brasil, Colecao Atas 16 Sociedade Brasileira de Matematica, 95-108
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2023 Revista de Matemática: Teoría y Aplicaciones