Abstract
In the late 1970s, the term Clifford Analysis was first used by the American mathematician John Ryan. Several decades have passed and this autonomous
discipline in mathematical analysis has proven to be extremely effective in rewriting many of the equations of mathematical physics. In this article we will obtain some interesting results on linear operators that are related to functional spaces that arise specifically in Clifford algebras. The connection of some of these operators with the well-known Lamé-Navier system in Linear Elasticity makes it possible to study essential properties and natural generalizations to high dimensions. At the end, new Dirac operators constructed with arbitrary orthonormal bases of Euclidean space will be considered.
References
R. A. Blaya, J. B. Reyes, A. Guzmán y U. Kähler, On the Π-operator in Clifford Analysis. Journal of Mathematical Analysis and Applications 434(2016), 1138-1159. doi: 10.1016/j.jmaa.2015.09.038
R. A. Blaya, J. B. Reyes, A. Guzmán y U. Kähler, On the φ-Hiperderivative of the ψ-Cauchy-Type Integral in Clifford Analysis. Comput. Methods Funct. Theory 17(2017), 101-119. doi: 10.1007/s40315-016-0172-0
R. A. Blaya, D. A. Santiesteban, J. B. Reyes y A. M. García, Inframonogenic decomposition of higher-order Lipschitz functions. Math. Meth. Appl. Sci. 45(2022), 4911-4928. doi: 10.1002/mma.8078
S. Bock, K. Gürlebeck, D. Legatiuk y H. M. Nguyen, ψ-Hyperholomorphic functions and a Kolosov-Muskhelishvili formula. Math. Methods Appl. Sci. 38(2015), 5114-5123. doi: 10.1002/mma.3431
F. Brackx, R. Delanghe y F. Sommen, Clifford analysis. Wiley, 1982.
R. Delanghe, R. S. Krausshar y H. R. Malonek, Differentiability of functions with values in some real associative algebras: approaches to an old problem. Bulletin de la Société Royale des Sciences de Liège 70(2001), 231-249
R. Delanghe, F. Sommen y V. Soucek, Clifford Algebras and Spinor-Valued Functions, A Funtion Theory for the Dirac Operator. Springer (Ed.). Springer-Science+Business Media, B.V., 1992. doi: 10.1007/978-94-011-2922-0
D. C. Dinh, On structure of inframonogenic functions. Adv. Appl. Clifford Algebras 31(2014), 1-12. doi: 10.1007/s00006-021-01157-0
A. M. Garc´ıa, T. M. Garc´ıa y R. A. Blaya, Comparing harmonic and inframonogenic functions in Clifford Analysis. Mediterr. J. Math. 19(2022), 1-19. doi: 10.1007/s00009-021-01957-5
A. M. García, T. M. García, R. A. Blaya y J. B. Reyes, A Cauchy integral formula for inframonogenic functions in Clifford analysis. Adv. Appl. Clifford Algebras 27(2017), 1147-1159. doi: 10.1007/s00006-016-0745-z
A. M. García, T. M. García, R. A. Blaya y J. B. Reyes, Inframonogenic functions and their applications in three dimensional elasticity theory. Math. Meth. Appl. Sci. 41(2018), 3622-3631. doi: 10.1002/mma.4850
A. M. García, T. M. García, R. A. Blaya y J. B. Reyes, Decomposition of inframonogenic functions with applications in elasticity theory. Math. Meth. Appl. Sci. 43(2020), 1915-1924. doi: 10.1002/mma.6015
A. M. García, D. A. Santiesteban y R. A. Blaya, On the Dirichlet problem for second order elliptic systems in the ball. Journal of Differential Equations 364(2023), 498-520. doi: 10.1016/j.jde.2023.03.050
K. Gürlebeck, K. Habetha y W. Sprösig, Holomorphic Functions in the Plane and n-Dimensional Space. B. Birkhäuser Verlag (Ed.). Birkhäuser Verlag, Basel, 2008. doi: 10.1007/978-3-7643-8272-8
K. Gürlebeck, U. Kähler y M. Shapiro, On the Π-operator in hyperholomorphic function theory. Advances in Applied Clifford Algebras 9(1999), 23-40. doi: 10.1007/BF03041935
K. Gürlebeck y H. M. Nguyen, On ψ-hyperholomorphic Functions and a Decomposition of Harmonics. Hyper complex Analysis: New Perspectives and Applications, Trends in Mathematics (2014), 181-189. doi: 10.1007/978-3-319-08771-9 12
K. Gürlebeck y H. M. Nguyen, ψ-Hyperholomorphic functions and an application to elasticity problems. AIP Conference Proceedings 1648(2015), 440005. doi: 10.1063/1.4912656
R. Lávicka, The Fischer decomposition for the H-action and its applications. Hypercomplex analysis and applications trends in mathematics. Edited by Sabadini and F. Sommen I(2011). doi: 10.1007/978-3-0346-0246-4 10
L. W. Liu y H. K. Hong, Clifford algebra valued boundary integral equations for three-dimensional elasticity. Appl. Math. Modell. 54(2018), 246-267. doi: 10.1016/j.apm.2017.09.031
H. Malonek, D. Peña-Peña y F. Sommen, Fischer decomposition by inframonogenic functions. CUBO A Mathematical Journal 12(2010), 189-197. doi: 10.4067/S0719-06462010000200012
H. Malonek, D. Peña-Peña y F. Sommen, A Cauchy-Kowalevski Theorem for Inframonogenic Functions. Math. J. Okayama Univ. 53(2011), 167-172. doi: 10.48550/arXiv.0911.0716
M. H. Nguyen, μ-Hyperholomorphic Function Theory in R³: Geometric Mapping Properties and Applications. 2015.
K. Nono, On the quaternion linearization of Laplacian Δ. Bull. Fukuoka Univ. Ed. III 35(1986), 5-10.
D. A. Santiesteban y R. A. Blaya, Isomorphisms of partial differential equations in Clifford analysis. Adv. Appl. Clifford Algebras 32(2022), 1-18. doi: 10.1007/s00006-021-01191-y
D. A. Santiesteban, R. A. Blaya y M. Á. Alejandre, On (ϕ, ψ)-inframonogenic functions in Clifford analysis. Bull. Braz. Math. Soc. New Series 53(2022), 605-621. doi: 10.1007/s00574-021-00273-6
D. A. Santiesteban, R. A. Blaya y M. Á. Alejandre, On a generalized Lamé-Navier system in R3. Mathematica Slovaca 72(2022), no. 6, 1527-1540. doi: 10.1515/ms-2022-0104
D. A. Santiesteban, R. A. Blaya y J. B. Reyes, Boundary value problems for a second-order elliptic partial differential equation system in Euclidean space. Math. Meth. Appl. Sci. 46(2023), 15784-15798. doi: 10.1002/mma.9426
D. A. Santiesteban, Y. P. Pérez y R. A. Blaya, Generalizations of harmonic functions in Rm. Anal. Math. Phys. 12(2022), 1-12. doi: 10.1007/s13324-021-00620-2
M. V. Shapiro y N. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory. Complex Variables 27(1995), 17-46. doi: 10.1080/17476939508814803
L. Wang, S. Jia, L. Luo y F. Qiu, Plemelj formula of inframonogenic functions and their boundary value problems. Complex Var. Elliptic Equ. (2002). doi: 10.1080/17476933.2022.2040019
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Daniel Alfonso Santiesteban