Abstract
We present the aggregated excess demand functions in an exchange economy. We study the properties and the equilibrium price vector of the aggregated excess demand functions. We prove that the walrasian equilibrium is a Pareto optimun. We study regular ecomies. We prove the existence of regular equilibrium for regular economies. We study the unicity of the equilibrium price vector.
References
Acuña, Osvaldo y Ulate, F. 1991,Desarrollo, proposiciones y pruebas matemáticas sobre la teoría de demanda sin utilidad, Revista Ciencias Económicas Vol XI, No1-2.
Acuña, Osvaldo y Ulate, F. 1992, Equilibrio de precios y ́óptimo de Pareto en Intercambio, Ciencias Matemáticas 3(1), pp. 77-90.
Debreu, G. (1970) Economies with a finite set of equilibria, Econometrica 38(3), pp. 387-392.
Dierker, E. (1972) Two remarks on the number of equilibria of an economy, Econometrica 40(5), pp.951-953.
Guillemin, V. and Pollack, A. (1974) Differential Topology. Englewood Cliffs, NJ, Prentice-Hall.
Hopf, H. (1926) Vertorfelder inn-dimensionalen Mannigtalf y Keiten, Math Annalen, 96, pp. 225-250.
Mas-Collel, A. (1985) The theory of general Economic Equilibrium. A differentiable approach. Cambridge University Press, Cambridge.
McKenzie, L. (1960) Matrices with dominant diagonals and economic theory. In: Mathematical Methods in Social Sciences, 1959, K. Arrow, S. Karlin and P. Suppes (eds.), pp. 47-62. Stanford CA, Stanford University Press.
Milnor, J. (1965) Topology from the Differentiable Viewpoint. Cherlottesville. University Press of Vir-ginia.
Walras, L. (1954) Elements of Pure Economics (1926). Trad. por W. Jaff ́ı, London, Allen-Unwin.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 1994 Osvaldo Acuña Ortega, Fernán Ulate Montero