Resumen
La clasificación de un brote con la categoría de epidemia requiere del cumplimiento de determinados parámetros epidemiológicos y estadísticos que necesitan de un estudio simultáneo; la teoría matemática ayuda a los epidemiólogos en la detección de las epidemias en aquellos casos en los que no está clara su evidencia. Actualmente estas situaciones se han comenzado a estudiar mediante las denominadas técnicas de clustering (del inglés cluster que significa aglomeración), apoyados en productos de software especializaos en el tema. El presente trabajo está encaminado al estudio actualizado de dichas técnicas y a su mejoramiento mediante la inclusión de factores de riesgos. Se expone una aplicación con datos reales.
Citas
Marshall, R. (1991) “A review of methods for the statistical patterns of disease”, J. R. Statist. Soc. 154: 421–441.
Farr, W. (1840) “Progress of epidemics”, Second Report of the Register General of England and Wales: 91–98.
Aldrich, T.; Wanzer, D. J. (1993) “Cluster”, Preprint, The agency for Toxic Sub-stances and Disease Registry Division of Health Studies, U.S.A
Jacquez, G.; Waller, L.; Grimson, R.; Watenberg, D. (1996) “The analysis of disease clusters, Part I: state of the art”, Infection Control and Hospital Epidemiology 17(6): 319–327.
Grimson, R.; Rose, R.D. (1991) “A versatile test for clustering and a proximity analysis of neurons”, Meth. Inform. Med. 30: 299–303.
Cuzick J.; Edwards R. (1990) “Spatial clustering for inhomogeneous populations”, (with discussions) J. R. Stat. Soc. (series B) 52: 72–104.
Moran, P. (1950) “Notes on continuous stochastic phenomena”, Biometrics 37:17–23.
Jacquez, G.; Waller, L.; Grimson, R.; Watenberg, D. (1996) “The analysis of disease clusters, Part II: introduction to techniques”, Infection Control and Hospital Epidemiology 17(6): 385–397.
Grimson, R.; Aldrich, T.; Drane J. (1992) “Clustering in sparse data and an analysis of rhabdomyosarcoma incidence”, Statistics in Medicine 11: 761–768.
Larsen, R.; Holmes, C.; Heath, C. (1973) “A statistical test for measuring unimodal clustering, a description of the test and of it’s applications of cases of acuteleukemia in metropolitan Atlanta, Georgia”, Biometrics29: 301–309. Nagarwilla, N. (1996) “A Scan statistic with a variable window.”, Statistics in Medicine 15: 845–850.
Knox, E. (1964) “The detection of space-time interactions”, Applied Statistics 13: 25–30.
Knox, E. (1964) “Epidemiology of childhood leukemia in Northemberland and Durham”, Brit. J. Prev. Soc. Med. 18: 17–24.
Knox, E. (1965) “Recognition of outbreaks of acute leukemia and congenital mal-formations”, In Mathematics and Computer Science in Biology and Medicine: 227–233.
Mantel, N. (1967), “The detection of disease clustering and a generalized regression approach”, Cancer Research 27: 209–220.
Jacquez, G. (1996) “A k-nearest neighbor test for space-time interaction”, Statistics in Medicine 15: 1935–1945.
Casas, G.; Grau, R.; Allegret, M. (1997) “Técnicas de Clustering para el Estudio de Epidemias”. Tesis de Maestría en Matemática Aplicada, Universidad Central “Marta Abreu” de Las Villas.
Mantel, N.; Heanszel, W. (1959) “Aspectos estadísticos del análisis de datos de estudios retrospectivos de enfermedades.”Journal of National Cancer Institute 22(4): 719–747.
Jacquez, G. (1994) Stat! Statistical Software for the Clustering of Health Events (Software Manual). Biomedware, Ann Arbor, MI.
Casas, G.; Grau, R. (1998) EPIDET: Sistema Estadístico para la Detección de Epidemias por Técnicas de Clustering (Manual de usuario). Centro de Estudios de Informática, Universidad Central de Las Villas, Cuba.
Nauss, J. (1982) “Approximations for distributions of Scan statistics”, Journal of the American Statistical Association 77(377): 173–183.
Glaz, J. (1993) “Aproximations for the tail probabilities and moments of the Scan statistics”, Statistics in Medicine 12: 1845–1852.
Sahu, S.; Bendel, R.; Sison, C. (1993) “Effect of relative risk and cluster configuration on the power of the one-dimensional Scan statistics”, Statistics in Medicine 12: 1853–1865.