Resumen
Se examinan varias aproximaciones de los percentiles de la distribución X2 no centrada, debido a su precisión en un amplio rango de valores de los parámetros de la distribución.
Citas
Edwards, D.; Kreiner, S. (1983) “The analysis of contingency tables by graphical models”, Biometrika 70: 553–565.
Larrañaga, P.; Etxeberŕıa, R.; Lozano, J.A.; Sierra, B.; Inza, I.; Peña, J. (1999) “A review of the cooperation between evolutionary computation and probabilistic graphical models”, in: Proceedings of the Second Symposium on Artificial Intelligence, Editorial Academia, La Habana.
Lauritzen, S.L. (1989) “Lectures on contingency tables”, (3rd edn). Technical Report R-89-29, Institute for Electronic Systems, Aalborg University.
Lauritzen, S.L.; Spiegelhalter, D.J. (1988) “Local computations with probabilities on graphical structures and their application to expert systems (with discussion)”, J. Royal Stat. Soc. B 50: 157–224.
Lauritzen, S. L.; Wermuth, N. (1989) “Graphical model for associations between variables, some of which are qualitative and some quantitative”, Annals of Statistics 17: 31–57.
Lauritzen, S.L. (1996) Graphical Models. Oxford Science Publications, New York.
Mühlenbein, H.; Mahning, T. (1999) “The Factorized distribution algorithm for additively decomposed functions”, in: Proceedings of the Second Symposium on Artificial Intelligence, Editorial Academia, La Habana.
Mühlenbein, H.; Mahning, T.; Ochoa, A. (1999) “Schemata, distribution and graphical models in evolutionary optimization”, Journal of Heuristics 15: 215–244.
Wermuth, N.; Lauritzen, S.L. (1983) “Graphical and recursive models for contingency tables”, Biometrika 70: 537–552.
Wermuth, N.; Lauritzen, S.L. (1990) “On substantive research hypotheses, conditional independence graphs and chains models (with discussion)”, J.Roy. Stat. Soc. B 52: 21–72.
Wickens, T.D. (1989) Multiway Contingency Tables Analysis for the Social Sciences. LEA, New Jersey.
Whittaker, J. (1990) Graphical Models in Applied Multivariate Statistics. Wiley, New York.