Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://revistas.ucr.ac.cr/index.php/matematica/oai
Análisis del método local discontinuo Galerkin para la ecuación de Fokker-Planck
PDF

Palabras clave

Fokker-Planck equation
mixed finite element method
discontinuous Galerkin method
high-order approximations
ecuación de Fokker-Planck
método de elemento finito mixto
método de Galerkin discontinuo
aproximaciones de alto orden

Cómo citar

Guillén-Oviedo, H., & Sequeira, F. (2016). Análisis del método local discontinuo Galerkin para la ecuación de Fokker-Planck. Revista De Matemática: Teoría Y Aplicaciones, 23(2), 361–387. https://doi.org/10.15517/rmta.v23i2.25162

Resumen

En este artículo se introduce y se analiza el método “Local Discontinuous Galerkin” (LDG) para la ecuación de Fokker-Planck concondiciones de contorno homogéneas. En particular, se emplea una formulación mixta en la cual las principales incógnitas corresponden al flujo de probabilidad y la función de densidad de probabilidad. Se aplican resultados conocidos provenientes del análisis funcional para establecer que el esquema discreto está bien puesto. Además, se proveen estimaciones de error para el método completamente-discreto, usando la iteración de Euler hacia atrás. Finalmente, se presentan ejemplos numéricos que exhiben el buen comportamiento del esquema propuesto.

https://doi.org/10.15517/rmta.v23i2.25162
PDF

Citas

Arnold, D.N. (1982) “An interior penalty finite element method with discontinuous elements”, SIAM J. Numer. Anal. 19(4): 742–760.

Arnold, D.N.; Brezzi, F.; Cockburn, B.; Marini, L.D. (2002) “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal. 39(5): 1749–1779.

Boffi, D.; Brezzi, F.; Fortin, M. (2013) Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, Springer, Heidelberg.

Castillo, P.; Cockburn, B.; Perugia, I; Schötzau, D. (2000) “An a priori error analysis of the local discontinuous Galerkin method for elliptic problems”, SIAM J. Numer. Anal. 38(5): 1676–1706.

Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, Ch. (2002) “Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems”, Math. Comp. 71(238): 455–478.

Cockburn, B.; Dawson, C. (2000) “Some extensions of the local discontinuous Galerkin method for convection diffusion equations in multidimensions”, in: J. Whiteman (Ed.) Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, Elsevier: 225–238.

Cockburn, B.; Kanschat, G.; Perugia, I.; Schötzau, D. (2001) “Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids”, SIAM J. Numer. Anal. 39(1): 264–285.

Cockburn, B.; Shu, C.W. (1998) “The Local Discontinuous Galerkin Method for time-dependent convection-diffusion systems”, SIAM J. Numer. Anal. 35(6): 264–285.

Evans, L.C. (2010) Partial Differential Equations, Second Edition. American Mathematical Society, Providence RI, United States.

Gardiner, C.W. (1985) Handbook of Stochastic Methods: for Physics, Chemistry and Natural Sciences, Second Edition. Springer Series in Synergetics, Springer-Verlag, Berlin.

Gatica, G.N. (2014) A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics, Springer Cham Heidelberg.

Griffiths, D.J. (2005) Introduction to Quantum Mechanics, Second Edition. Pearson Prentice Hall.

Guzmán, J.; Sequeira, F.A.; Shu, C.-W. (2015) “H(div) conforming and DG methods for incompressible Euler’s equations”, Preprint 2015-19, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile.

Masud, A.; Bergman, L.A. (2005) “Application of multi-scale finite element methods to the solution of the Fokker-Planck equation”, Comput. Methods Appl. Mech. Engrg. 194(12-16): 1513–1526.

Ortiz, H.H.; Jiménez, F.N.; Posso, A.E. (2015) “Some exact solutions for a unidimensional Fokker-Planck equation by using Lie symmetries", Revista de Matemática: Teoría y Aplicaciones 22(1): 1–20.

Risken, H. (1996) The Fokker-Planck Equation: Methods of Solution and Applications, Second Edition. Springer Series in Synergetics, Springer-Verlag, Berlin.

Sequeira, F.A.; Castillo, P.E. (2012) “Implementación del método LDG para mallas no estructuradas en 3D”, Revista de Matemática: Teoría y Aplicaciones 19(2): 141–156.

Soong, T.T. (1973) Random Differential Equations in Science and Engineering. Academic Press, New York.

Ünal, G.; Sun, J.-Q. (2008) “New exact solutions to the Fokker-Planck- Kolmogorov equation”, Commun. Nonlinear Sci. Numer. Simul. 13(10): 2051–2059.

Vreugdenhil, C.B.; Koren, B. (1993) Numerical Methods for Advection-Diffusion Problems. Notes on Numerical Fluid Mechanics Vol. 45, Braunschweig.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2016 Helen Guillén-Oviedo, Filander Sequeira

Descargas

Los datos de descargas todavía no están disponibles.