Abstract
In this survey article we study the propagation of ultrasonic waves in liquids with gas bubbles. These media are extremely nonlinear. A tiny void fraction changes the properties of the medium drastically. The gas bubbles not only produce high nonlinearity, but also introduce dispersive phenomena and attenuation that can be decisive for the ultrasonic behavior. Several results obtained by a numerical model previously developed (based on the finite-volume method in the space dimension and the finitedifference method in the time domain) are presented here, which allow us to analyze some complex effects associated with this problem. The model solves a differential system that couples the nonlinear oscillations of the bubbles and the acoustic field. We mainly focus on understanding how to enhance the generation of new frequencies (harmonics and subharmonics from a one-frequency source and sum and difference frequencies from a two-frequency source) taking into account some aspects such as cavity type, smoothing and optimization of the medium.
References
J. Bellin, R. Beyer, Experimental investigation of an end-fire array. The Journal of the Acoustical Society of America 34(1962), no. 8, 1051–1054. DOI: 10.1121/1.1918243
J. C. Buckey, D. A. Knaus, D. L. Alvarenga, M. A. Kenton, P. J. Magari, Dual-frequency ultrasound for detecting and sizing bubbles. Acta Astronautica 56(2005), no. 9-12, 1041–1047. DOI: 10.1016/j.actaastro.2005.01.032
T. S. Desser, R. B. Jeffrey, Tissue harmonic imaging techniques: physical principles and clinical applications. Seminars in Ultrasound, CT and MRI. Elsevier. 2001. Vol. 22. no. 1, 1–10. DOI: 10.1016/S0887-2171(01)90014-9
M. Hamilton, D. Blackstock, Nonlinear Acoustics. Academic Press, 1998.
K. Naugolnykh, L. Ostrovsky, D. Crighton, M. Ablowitz, Nonlinear Wave Processes in Acoustics. Cambridge Texts in Applied Mathematics. Cambridge University Press, 1998.
D. N. Sinha, C. Pantea, Broadband unidirectional ultrasound propagation using sonic crystal and nonlinear medium. Emerging Materials Research 2(2013), no. 3, 117–126. DOI: 10.1680/emr.12.00039
M. T. Tejedor, O. Louisnard, C. Vanhille, Une etude numerique de la generation de sous-harmoniques en liquides bulleux au sein de resonateurs ultrasonores. 5emes Journees Scientifiques Ultrasons et Procedes. 2019.
M. T. Tejedor, C. Vanhille, A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids. Ultrasonics Sonochemistry 34(2017), 881–888. DOI: 10.1016/j.ultsonch.2016.07.020
M. T. Tejedor, C. Vanhille, Nonlinear resonance of cavities filled with bubbly liquids: A numerical study with application to the enhancement of the frequency mixing effect. Shock and Vibration 2018(2018). DOI: 10.1155/2018/1570508
M. T. Tejedor, C. Vanhille, An analysis of nonliner ultrasonic waves in bubbly liquids by a numerical model. 2022. https://www.youtube.com/watch?v=vEKl2N5PmJI.
P. J. Westervelt, Parametric Acoustic Array. The Journal of the Acoustical Society of America 35(1963), no. 4, 535–537. DOI: 10.1121/1.1918525
E. Zabolotskaya, Emission of harmonic and combination-frequency waves by air bubbles. Sov. Phys. Acoust. 18(1973), 396–398.
##plugins.facebook.comentarios##

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2023 Revista de Matemática: Teoría y Aplicaciones