Abstract
In this article it has been developed and implemented an environmental air monitoring-based method to easily quantify microbial contamination in different areas of the Laboratorio de Biotecnología, at the Occidente Campus of Universidad de Costa Rica. It determines potentially polluted zones by counting the viable fallout onto Petri dishes left open that, after incubation, give rise to microbial colony forming units (CFU). The optimized conditions for this study resulted in a Petri dish opening time of 2 h followed by an incubation period of 48 h at 37 °C. This method can be simply adapted to other teaching and research laboratories by segmenting the main working spaces into different areas (depending on the nature and activities they present) and adjusting the Petri dish opening time and incubation conditions to allow proper CFU formation. It has been found statistically significant differences among the 6 studied laboratory spaces by using 3 Petri dishes replicates per area during 5 sampling weeks of environmental monitoring rounds. The most polluted area resulted to be the washing and autoclaving area; followed by most of the laboratory working benches. The least contaminated area comprised the one destined to the preparation of reagents and use of laboratory equipment. This is the first microbial environmental monitoring protocol ever developed at the Laboratorio de Biotecnología at Occidente Campus of Universidad de Costa Rica. It will facilitate a better use, distribution, and maintenance of clean areas within the laboratory to implement more complex and specialized methodologies that demand better microbiological conditions in the near future.
References
Aguilar-Cascante, F. (2000). Análisis De Las Fuentes De Contaminación En Un Laboratorio De Cultivo De Tejidos: Detección Y Medidas De Control. Instituto Tecnológico de Costa Rica. https://repositoriotec.tec.ac.cr/bitstream/handle/2238/12/BJFIB20015.pdf?sequence=1&isAllowed=y
Ashour, M., Mansy, M. y Eisha, M. (2011). Microbiological Enviroment Monitoring in Pharmeutical Facility. Egyptian Academic Journal of Biological Sciences, 3(1), 63–74.
Briceño L., Puebla A,. Guerra, A., Jensen F., Núñez B., Ulloa, F. y Osorio A. (2009). Septicemia fatal causada por Vibrio cholerae no-O1, no-O139 hemolítico en Chile: Caso clínico. Revista Médica de Chile, 137(9), 1193–1196. https://doi.org/10.4067/S0034-98872009000900008
Bykowski, T. y Stevenson, B. (2020). Aseptic Technique. Current Protocols in Microbiology, 56(1), 1–11. https://doi.org/10.1002/cpmc.98
Charry, N. y Gómez, S. (2016). Determinación de los límites de la contaminación microbiana presente en superficies de un laboratorio de referencia distrital de microbiología farmacéutica. Journal of Pharmacy and Pharmacognosy Research, 4(3), 115–121.
Dennis, V., Owora, A. y Kirkpatrick, A. (2015). Comparison of Aseptic Compounding Errors Before and After Modified Laboratory and Introductory Pharmacy Practice Experiences. American Journal of Pharmaceutical Education, 79(10), 158. https://doi.org/10.5688/ajpe7910158
Ezzelle, J., Rodriguez, I., Darden, J., Stirewalt, M., Kunwar, N., Hitchcock, R., Walter, T., y D’Souza, M. (2008). Guidelines on good clinical laboratory practice: Bridging operations between research and clinical research laboratories. Journal of Pharmaceutical and Biomedical Analysis, 46(1), 18–29. https://doi.org/10.1016/j.jpba.2007.10.010
Flores-Rubio, D. (2018). Monitoreo ambiental micológico en ambientes internos del Área Histórica de la Biblioteca General de la Universidad Central del Ecuador. Universidad Central del Ecuador.
Forbes, B., Sahm, D. y Weissfeld, A. (2009). Diagnóstico Microbiológico (12th Ed.). Editorial Panamericana.
Genzen, J. (2020). Wiping the Slate Clean—Assessing Clinical Laboratory Contamination Risk. Clinical Chemistry, 66(9), 1128–1130. https://doi.org/10.1093/clinchem/hvaa161
Gordon, O., Berchtold, M., Staerk, A. y Roesti, D. (2014). Comparison of Different Incubation Conditions for Microbiological Environmental Monitoring. PDA Journal of Pharmaceutical Science and Technology, 68(5), 394–406. https://doi.org/10.5731/pdajpst.2014.00994
Herrera, K., Cobar, O., De León, J., Rodas, A., Boburg, S., Quan, J., Pernilla, L., Mancilla, C. y Gudiel, H. (2012). Impacto de la calidad microbiológica del aire externo en el ambiente interno de cuatro laboratorios de instituciones públicas en la ciudad de Guatemala y Bárcenas, Villa Nueva. Revista Científica, 22(1), 30–38. https://doi.org/10.54495/Rev.Cientifica.v22i1.120
Junco, R. y Rodríguez, C. (2001). Cultivo y crecimiento de los microorganismos. En A.- Llop, M. Váldez-Dapena, & J. Zuazo (Eds.), Microbiología y Parasitología Médicas (Tomo 1, Issue January, pp. 45–54). Editorial de Ciencias Médicas.
Lavelle, L. (2020). Good Manufacturing Practices : Aseptic and Sterile Processing. Pharmaceutical Technology Europe, 28, 28–29.
Leifert, C., Morris, C. E. y Waites, W. M. (1994). Ecology of Microbial Saprophytes and Pathogens in Tissue Culture and Field-Grown Plants: Reasons for Contamination Problems In Vitro. Critical Reviews in Plant Sciences, 13(2), 139–183. https://doi.org/10.1080/07352689409701912
Leifert, C. y Woodward, S. (1998). Laboratory contamination management: the requirement for microbiological quality assurance. Plant Cell, Tissue and Organ Culture, 52, 83–88.
Loaiza Hernández, M. y Ruiz Acero, L. (2019). Análisis del riesgo microbiológico del aire en dos laboratorios de la Universidad Santo Tomás Sede Villavicencio Campus Aguas Claras. Universidad de Santo Tomás.
Luoma, M. y Batterman, S. (2000). Autocorrelation and Variability of Indoor Air Quality Measurements. AIHAJ - American Industrial Hygiene Association, 61(5), 658–668. https://doi.org/10.1080/15298660008984575
Mroginski, L. y Roca, W. (1991). Cultivo de tejidos en la agricultura: fundamentos y aplicaciones. CIAT.
Napoli, C., Tafuri, S., Montenegro, L., Cassano, M., Notarnicola, A., Lattarulo, S., Montagna, M. T. y Moretti, B. (2012). Air sampling methods to evaluate microbial contamination in operating theatres: results of a comparative study in an orthopaedics department. Journal of Hospital Infection, 80(2), 128–132. https://doi.org/10.1016/j.jhin.2011.10.011
Pasquarella, C., Pitzurra, O. y Savino, A. (2000). The index of microbial air contamination. Journal of Hospital Infection, 46(4), 241–256. https://doi.org/10.1053/jhin.2000.0820
Pérez, H. y Sánchez, V. (2010). Propuesta de diseño de monitoreo ambiental microbiológico para diagnóstico de niveles de contaminación en áreas de procesamiento aséptico. ICIDCA Sobre Los Derivados de La Caña de Azúcar, 44(3), 7–14. http://www.redalyc.org/articulo.oa?id=223120684002
Quishpe-Nasimba, J. (2021). Evaluación microbiológica de la calidad del aire en las áreas del Laboratorio de Microbiología del Hospital de Especialidades de las Fuerzas Armadas N°1 [ESPE, Universidad de las Fuerzas Armadas]. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
Rojas, O. (2017). Determinación de la contaminación bacteriana por aerosoles según localización y tiempo en los ambientes de la clínica docente de la UPC [Universidad Peruana de Ciencias Aplicadas]. https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/621649/original.pdf?sequence=1&isAllowed=y
Romero-Bohórquez, C., Castañeda, D. y Acosta., G. (2016). Determinación de la calidad bacteriológica del aire en un laboratorio de microbiología en la Universidad Distrital Francisco José de Caldas en Bogotá, Colombia. Nova, 14(26), 101–109. https://doi.org/10.22490/24629448.1756
Sanders, E. (2012a). Aseptic Laboratory Techniques: Plating Methods. Journal of Visualized Experiments, 63, 1–18. https://doi.org/10.3791/3064
Sanders, E. (2012b). Aseptic Laboratory Techniques: Volume Transfers with Serological Pipettes and Micropipettors. Journal of Visualized Experiments, 63, 1–12. https://doi.org/10.3791/2754
Shiferaw, T., Gebr-silasse, L., Mulisa, G., Zewidu, A., Belachew, F., Muleta, D. y Zemene, E. (2016). Bacterial Indoor-Air Load and its Implications for Healthcare-Acquired Infections in a Teaching Hospital in Ethiopia. International Journal of Infection Control, 12(1), 1. https://doi.org/10.3396/IJIC.v12i1.004.16
Sieuwerts, S., de Bok, F., Mols, E., de Vos, W. y Hylckama, V. (2008). A simple and fast method for determining colony forming units. Letters in Applied Microbiology, 47(4), 275–278. https://doi.org/10.1111/j.1472-765X.2008.02417.x
Solano Barquero, M., Chacón, L., Barrantes, K. y Achí, R. (2013). Implementación de dos métodos de recuento en placa para la detección de colifagos somáticos, aportes a las metodologías estándar. Revista Peruana de Biología, 19(3), 335–340. https://doi.org/10.15381/rpb.v19i3.1050
Stärk, A. (2020). Microbiological Environmental Monitoring. En D. Roesti y M. Goverde (Eds.), Pharmaceutical Microbiological Quality Assurance and Control (pp. 231–264). John Wiley & Sons. https://doi.org/10.1002/9781119356196.ch8
Stevens, W. (2003). Good clinical laboratory practice (GCLP): the need for a hybrid of good laboratory practice and good clinical practice guidelines/standards for medical testing laboratories conducting clinical trials in developing countries. Quality Assurance, 10(2), 83–89. https://doi.org/10.1080/10529410390262727
Suvikas-Peltonen, E., Hakoinen, S., Celikkayalar, E., Laaksonen, R. y Airaksinen, M. (2017). Incorrect aseptic techniques in medicine preparation and recommendations for safer practices: a systematic review. European Journal of Hospital Pharmacy, 24(3), 175–181. https://doi.org/10.1136/ejhpharm-2016-001015
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Copyright (c) 2022 Pensamiento Actual