Abstract
Homicide is one of the most important mortality causes that has reduced the Mexican life expectancy. That is why the aim of this work is to identify some sociodemographic and economic factors that can help explain homicides in Mexico and measure their impact, assuming the current conditions prevail. To do that, several Machine Learning (ML) methods were evaluated. The C5.0 model is best suited for the data at hand. After fine-tuning the algorithm, we used the estimated model to identify the main factors that explain homicides. Among these factors, eleven were selected that can be influenced by direct changes in domestic public policy, laws and/or regulations. These were used as input in a two-level fractional factorial Statistical Design of Experiments (DOE) to estimate their main effects and possible interactions. Although several of these factors had statistically significant effects on homicide rate, the one that had the biggest and direct impact from a practical perspective, was the Rule of Law Index (RLI). In fact, if we assumed that all states had the median RLI of 0.37, implementing domestic policies and procedures to move them all to the best RLI level could significantly reduce homicide rates.
References
Aburto, J., Beltrán, H., García, V. & Canudas, V. (2016). Homicides in Mexico reversed life expectancy gains for men and slowed them for women 2000-10. Health Affairs, 35, 88-95. https://www.healthaffairs.org/doi/10.1377/hlthaff.2015.0068
Agresti, A. (2002). Categorical data analysis. John Wiley & Sons.
Alberg, J. (2015, June 14). R, caret and parameter tuning C5.0. Www.Euclidean.Com. Retrieved March 20, 2022, from https://www.euclidean.com/machine-learning-in-practice/2015/6/12/r-caret-and-parameter-tuning-c50
Arteaga, N., Dávila, C. & Pardo, A. (2019). Necrospaces and violent homicides in Mexico. International Journal of Conflict and Violence, 13, 1-14. https://www.ijcv.org/index.php/ijcv/article/view/3125
Bengio, Y. & Grandvalet, Y. (2004). No unbiased estimator of the variance of K-fold cross-validation. Journal of Machine Learning Research, 5, 1089-1105.
Bishop, C. (2009). Pattern recognition and Machine Learning. Springer Science + Business Media, LLC.
Bouckaert, R. R. (2004, July). Estimating Replicability of Classifier Learning experiments. In Proceedings of the twenty-first international conference on Machine learning, 15-22.
Box, G., Hunter, W. & Hunter, J. (1978). Statistics for experimenters. Wiley Series in Probability and Mathematical Statistics.
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression trees. Chapman and Hall.
Cadena, E. and Garrocho, C. (2019). Geografía del terror: homicidios y desapariciones forzadas en los municipios de Mexico 2006-2017 [Geography of terror: homicides and enforced disappearances in the municipalities of Mexico 2006-2017]. Papeles de población, 25(102), 219-273. https://doi.org/10.22185/24487147.2019.102.37
Consejo Nacional de Población (2016). Índice de marginación por entidad federativa y municipio 2015. Mexico. https://www.gob.mx/cms/uploads/attachment/file/159051/00_Preliminares.pdf
Consejo Nacional de Evaluación (2018). Data from: Several economic and social índices. Mexico. https://datos.gob.mx/busca/organization/coneval
Cortes, C. & Vapnik, V. (1995). Support Vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/bf00994018
Díaz, M. (2016). El dilema eterno: ¿Pobreza o desigualdad en la explicación del homicidio? hallazgos inesperados y propuesta para superar el dilema [The eternal dilemma: Poverty or inequality in the explanation of homicide? unexpected findings and proposal to overcome the dilemma]. Acta Sociológica, 70, 197-221. https://doi.org/10.1016/j.acso.2017.01.009
Eisner, M. (2016). Evidence-based interventions that should be scaled up. In Conference presented at 8th Milestones of a Global Campaign for Violence Preventing Meeting. Canada.
Executive Secretariat of the National Public Security System (2015a). Informe de víctimas de homicidio, secuestro y extorsión 2014. [Report of victims of homicide, kidnapping and extortion]. Secretaria de Gobernación, Mexico. https://secretariadoejecutivo.gob.mx//docs/pdfs/victimas/Victimas2014_052015.pdf
Executive Secretariat of the National Public Security System (2015b). Informe de víctimas de homicidio, secuestro y extorsión 2015. [Report of victims of homicide, kidnapping and extortion]. Secretaria de Gobernación, Mexico. https://secretariadoejecutivo.gob.mx//docs/pdfs/victimas/Victimas2015_082015.pdf
Executive Secretariat of the National Public Security System (2016). Informe de víctimas de homicidio, secuestro y extorsión 2016. [Report of victims of homicide, kidnapping and extortion]. Secretaria de Gobernación, Mexico. https://secretariadoejecutivo.gob.mx//docs/pdfs/victimas/Victimas2016_122016.pdf
Executive Secretariat of the National Public Security System (2017). Informe de víctimas de homicidio, secuestro y extorsión 2017. [Report of victims of homicide, kidnapping and extortion]. Secretaria de Gobernación, Mexico. https://secretariadoejecutivo.gob.mx/docs/pdfs/victimas/Victimas2017_102017.pdf
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
Flores, M. & Villareal, A. (2015). Exploring the spatial diffusion of homicides in Mexican municipalities through exploratory spatial. A Journal of Policy Development and Research, 17(1), 35-49.
Friedman, J., Hastie, T. & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
Fuentes C. & Sánchez, O. (2015). Contexto sociodemográfico de los homicidios en Mexico D.F.: un análisis espacial [Sociodemographic context of homicides in Mexico City: a spatial analysis]. Revista Panamericana de Salud Pública, 38(6), 450-456.
Fujita, G., Watanabe, K., Yokota, K., Suzuki, M., Wachi, T., Otsuka, Y. & Kuraishi, H. (2016). A multivariate model for analyzing crime scene information: predicting stranger, solo offender and money-oriented motive of Japanese homicides. Homicide Studies, 20(4), 295–320. https://doi.org/10.1177/1088767915613828
Gamlin, J. & Hawkes, S. (2017). Masculinities on the continuum of structural violence: the case of Mexico’s homicide epidemic. Social Politics, 25(1), 50–71. https://doi.org/10.1093/sp/jxx010
González, G., Vega, M. & Cabrera, C. (2012). Impacto de la violencia homicida en la esperanza de vida masculina de México. Revista Panamericana de Salud Pública, 32(5), 335–342.
Grömping, U. (2014). R Package FrF2 for creating and analysing Fractional Factorial 2-level designs. Journal of Statistical Software 56(1), 1-56. https://doi.org/10.18637/jss.v056.i01
Guerra, G. (2020, February 19). El doble infierno. El Universal. https://www.eluniversal.com.mx/opinion/gabriel-guerra/el-doble-infierno
Hernández, J.M.R., Campuzano, J.C., Medina, M.H., Solorzano, L. & Chaparro, P.E. (2018). Comparing the patterns and trends of homicide mortality in Mexico and Colombia from 2000 to 2015 (differences and similarities). Archives of Medicine 10(6), 1-8. https://doi.org/10.21767/1989-5216.1000292
Instituto Mexicano de la Competitividad. (2018, October 12). Índice de Estado de Derecho en México 2018, vía WJP [Rule of Law Index in Mexico 2018, via WJP]. Centro de Investigación en Política Pública. https://imco.org.mx/temas/indice-estado-derecho-mexico-2018-via-wjp/
Instituto Mexicano de la Competitividad. (2018a, October 12). Índice de Percepción de la Corrupción en México 2018, vía WJP [Corruption Perceptions Index in Mexico 2018, via WJP]. Centro de Investigación en Política Pública. https://imco.org.mx/indice-percepcion-la-corrupcion-2018-via-transparencia-internacional-2/
Instituto Nacional de Estadística y Geografía (2018). Comunicado de prensa núm. 310/18 [Press release no. 310/18]. Dirección General de Estadística, Mexico. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2018/EstSegPub/homicidios2017_07.pdf
Instituto Nacional de Estadística y Geografía. (2019). Patrones y tendencias de los homicidios en Mexico [Homicide Patterns and Trends in Mexico]. Documentos de Análisis y Estadísticas. https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825188436.pdf
Institute for Economics and Peace. (2020). Mexico Peace Index 2020: Identifying and measuring the factors that drive peace. https://www.economicsandpeace.org/reports/
Kim, J. (2009). Estimating classification error rate: repeated cross-validation repeated old-out and Bootstrap. Computational Statistics and Data Analysis, 53(11), 3735-3745. https://doi.org/10.1016/j.csda.2009.04.009
Kim, S., Joshi, P., Kalsi, P. & Taheri, P. (2018). Crime analysis through Machine Learning. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) pp. 415-420. https://doi.org/10.1109/IEMCON.2018.8614828
Kuhn, M. (2020). caret: Classification and Regression training, R package version 6.0-85. https://CRAN.R-project.org/package=caret.
Kuhn, M. & Johnson, K. (2013). Applied predictive modelling. Springer.
Kuhn, M. & Quinlan, R. (2018). C50: C5.0 Decision trees and Rule-based models, R package version 0.1.2. https://CRAN.R-project.org/package=C50.
Levantesi, S. & Nigri, A. (2019). A Random Forest algorithm to improve the Lee–Carter mortality forecasting: impact on q-forward. Soft Comput 24, 8553-8567. https://doi.org/10.1007/s00500-019-04427-z
Levantesi, S., Nigri, A. & Piscopo, G. (2020). Longevity risk management through Machine Learning: State of the Art. Insurance Markets and Companies, 11(1), 11-20. https://doi.org/10.21511/ins.11(1).2020.02
McLean, C., Long, M.A., Stretesky, P.B., Lynch, M.J. & Hall, S. (2019). Exploring the relationship between neoliberalism and homicide: a cross-national perspective. International Journal of Sociology, 49(1), 53-76. https://doi.org/10.1080/00207659.2018.1560981
Medina, O. & Villegas, B. (2019). Homicidios en jóvenes y desigualdades sociales en México, 2017. Revista Panamericana de Salud Pública, 4, 1. https://doi.org/10.26633/rpsp.2019.94
Meneses, R. & Quintana, M. (2016). Homicidios e investigación criminal en Mexico. Perfiles Latinoamericanos, 24(48), 297-318. https://doi.org/10.18504/pl2448-012-2016
México Evalúa (2018). Hallazgos 2017: seguimiento y evaluación del sistema de justicia penal en México. https://www.mexicoevalua.org/hallazgos2017-2/
Molinaro, A. (2005). Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15), 3301-3307. https://doi.org/10.1093/bioinformatics/bti499
National Women´s Institute. (2020). Alerta de violencia de género contra las Mujeres [Alert of violence against women] (dataset). Mexico. https://www.gob.mx/inmujeres/acciones-y-programas/alerta-de-violencia-de-genero-contra-las-mujeres-80739
Nigri, A., Levantesi, S. & Marino, M. (2021). Life expectancy and lifespan disparity forecasting: a long short-term memory approach. Scandinavian Actuarial Journal, (2), 110-133.
Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S. & Perla, F. (2019). A deep learning integrated Lee–Carter model. Risks, 7(1), 33.
Observatorio Nacional Ciudadano (2015). Incidencia de los delitos de alto impacto en México 2015. https://onc.org.mx/publicaciones?a=2015
Observatorio Nacional Ciudadano (2016). Incidencia de los delitos de alto impacto en México 2016. https://onc.org.mx/publicaciones?a=2016
Observatorio Nacional Ciudadano (2017). Incidencia de los delitos de alto impacto en México 2017. https://onc.org.mx/publicaciones?a=2017
Ordorica-Mellado, M. & Cevantes-Salas, M. (2021). El fin de la esperanza: los homicidios como causa de la expectativa de vida perdida. Papeles de Población, 26(105), 39-68. https://doi.org/10.22185/24487147.2020.105.21
Perla, F., Richman, R., Scognamiglio, S. & Wüthrich, M. V. (2021). Time-series forecasting of mortality rates using deep learning. Scandinavian Actuarial Journal, 2021(7), 572-598. http://dx.doi.org/10.2139/ssrn.3595426
Quimet, M., Langlade, A. & Chabot, C. (2018). The dynamic theory of homicide: adverse social conditions and formal social control as factors explaining the variations of the homicide rate in 145 countries. Canadian Journal of Criminology and Criminal Justice, 60(2), 241-265. https://doi.org/10.3138/cjccj.2017.0005.r2
Quinlan, R. (1992). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI Workshop on Empirical Methods in Artificial Intelligence, Seattle. Available from https://www.cc.gatech.edu/home/isbell/classes/reading/papers/Rish.pdf
Rodríguez, O. (2016). Violent Mexico: participatory and multipolar violence associated with organised crime. International Journal of Conflict and Violence, 10(1), 41-60.
Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Therneau, T. & Atkinson, B. (2019). rpart: Recursive partitioning and Regression trees, R package version 4.1-15, https://CRAN.R-project.org/package=rpart.
United Nations Office on Drugs and Crime. (2019). Global study on homicide. Available from https://www.unodc.org/documents/data-and-analysis/gsh/Booklet1.pdf
World Tourism Organization. (2018). Tourism highlights. Available from https://www.e-unwto.org/doi/pdf/10.18111/9789284419876
US Department of State-Bureau of Consular Affairs. (2018). Mexico Travel Advisory (dataset). USA. Available from https://travel.state.gov/content/travel/en/traveladvisories/traveladvisories/mexico-travel-advisory.html
Vapnik, V. (1996). The nature of Statistical Learning theory. Springer.
World Health Organization. (2015). International Statistical Classification of Diseases and Related Health Problems: 10th Revision (ICD-10) (5th 2016 Revision ed.). World Health Organization.
World Health Organization. (2020). Violence info: learn about the prevalence of different types of violence. Available from https://apps.who.int/violence-info/
Zeoli, A., Pizarro, J., Grady, S. & Melde, C. (2012). Homicide as infectious disease: using public health methods to investigate the diffusion of Homicide. Justice Quarterly, 31(3), 1-24. https://doi.org/10.1080/07418825.2012.732100
Zepeda, G. & Jiménez, C. (2019). Impunidad en homicidio doloso en México: reporte 2019. Impunidad Cero. https://www.impunidadcero.org/uploads/app/articulo/131/contenido/1575312021S66.pdf
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2022 Jose Eliud Silva Urrutia, Miguel A. Villalobos