Abstract
The increased degradation of natural habitats has strengthened the need to know and assess biodiversity patterns. Particularly, the study of the araneofauna in the North of Argentina is scarce in ecoregions with priority interests of conservation. Generally, spiders are used as indicators to compare biodiversity patterns, and here we tested whether the spider family-level can act as a substitute of the species-level in biodiversity rapid assessments. For this, we analyzed the alpha and beta diversity of the epigeal spider communities in three separate sites of different ecoregions of Salta province (Chaco Serrano, Monte de Sierras and Bolsones, and Puna), during the fall, winter, spring and summer of 2005-2007. In each site, 10 pitfall traps, located along a linear transect and 10 meters apart, were placed for seven days per season of continuous activity. Samples were obtained, taken to the laboratory and identified. A total of 886 spiders were collected from 100 species/morphospecies of 19 families. The completeness of the inventory obtained for each ecoregion surpassed 70 %. The Chaco ecoregion (S = 56, N = 495) reported the highest species richness and abundance compared to Monte (S = 44, N = 262) and Puna (S = 23, N = 129). Alpha and beta diversity showed that ecoregional spider communities were different, sharing between them very few species (0.7 %). The Chaco reported a high dissimilarity of its assemblage with respect to the other ecoregions. The colder seasons (autumn and winter) proved to be important in assessing the diversity of spiders in these ecoregions, contributing to regional diversity in conjunction with the diversity of warm seasons (spring and summer). Four guilds were reported (ground hunters, specialists, other hunters and ambush hunters), but the latter was absent in Monte, and the specialists dominated in Chaco. Zodariidae was dominant in Chaco Serrano, where Leprolochus birabeni is an indicator of native environments. On the other hand, Lycosidae, Philodromidae, Anyphaenidae and Oonopidae were important for Monte and Puna. This way, the use of pitfall traps in all seasons of the year, and the recognition of spider families for epigeal fauna, was very useful for biodiversity rapid assessments in this area. Like the species-level, the taxonomic family-level evidenced changes in alpha and beta diversity. This allowed the inclusion of this taxonomic group for future biodiversity monitoring studies for conservation plans in these ecoregions.
References
Avalos, G., Rubio, G. D., Bar, M. E., & González, A. (2007). Arañas (Arachnida: Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Revista de Biología Tropical, 55, 899-909.
Azevedo, G. H., Faleiro, B. T., Magalhães, I. L., Benedetti, A. R., Oliveira, U., Pena Barbosa, J. P., Santos, M. T., Vilela, P. F., De Maria, M., & Santos, A. J. (2014). Effectiveness of sampling methods and further sampling for accessing spider diversity: a case study in a Brazilian Atlantic rainforest fragment. Insect Conservation and Diversity, 7(4), 381-391.
Bertonatti, C., & Corcuera, J. (2000). Situación Ambiental Argentina. 2000. Buenos Aires: Fundación Vida Silvestre.
Bizuet-Flores, M. Y., Jiménez-Jiménez, M. L., Zavala-Hurtado, A., & Corcuera, P. (2015). Diversity patterns of ground dwelling spiders (Arachnida: Araneae) in five prevailing plant communities of the Cuatro Ciénegas Basin, Coahuila, Mexico. Revista Mexicana de Biodiversidad, 86, 153-163.
Bourass, E. M., Shaibi, T., Elkrwe, H. M., Ghana, S., & Swehli, A. I. (2014). Spider fauna (Araneae) of Abu Ghilan National Nark, north-western Libya. Indian Society of Arachnology, 3(2), 6-16.
Bowden, J. J., & Buddle, C. M. (2010). Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic, 63(3), 261-272.
Brennan, K. E., Ashby, L., Majer, J. D., Moir, M. L., & Koch, J. M. (2006). Simplifying assessment of forest management practices for invertebrates: How effective are higher taxon and habitat surrogates for spiders following prescribed burning? Forest Ecology and Management, 231(1), 138-154.
Buchholz, S. (2010). Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodiversity and Conservation, 19, 2565-2595.
Cabrera, A. L. (1957). La vegetación de la Puna Argentina. Revista de Investigaciones Agrícolas, 11(4), 317-512.
Cardoso, P. (2009). Standardization and optimization of arthropod inventories-the case of Iberian spiders. Biodiversity and Conservation, 18, 3949-3962.
Cardoso, P., Pekár, S., Jocque, R., & Coddington, J. A. (2011). Global patterns of guild composition and functional diversity of spiders. PLoS ONE, 6, e21710. DOI:10.1371/journal.pone.0021710
Cardoso, P., Scharff, N., Gaspar, C., Henriques, S. S., Carvalho, R., Castro, P. H., Schmidt JB, Silva I, Szuts T, De Castro A., & Crespo, L. C. (2008). Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest. Insect Conservation and Diversity, 1(2), 71-84.
Cardoso, P., Silva, I., De Oliveira, N. G., & Serrano, A. R. (2007). Seasonality of spiders (Araneae) in Mediterranean ecosystems and its implications in the optimum sampling period. Ecological Entomology, 32(5), 516-526.
Castanheira, P., Pérez-González, A., & Baptista, R. L. (2016). Spider diversity (Arachnida: Araneae) in Atlantic Forest areas at Pedra Branca State Park, Rio de Janeiro, Brazil. Biodiversity Data Journal, 4, e7055. DOI: 10.3897/BDJ.4.e7055
Cava, M. B., Corronca, J. A., & Echeverría, A. J. (2013). Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina. Revista de Biología Tropical, 61(4), 1785-1798.
Chatzaki, M., Trichas, A., Markakis, G., & Mylonas, M. (1998). Seasonal activity of the ground spider fauna in a Mediterranean ecosystem (Mt Youchtas, Crete, Grece). Proceedings of the 17th European Colloquium of Arachnology, 235-243.
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
Chao, A., & Shen, T. (2003-2005). Program SPADE. Species Prediction and Diversity Estimation. http://chao.stat.nthu.edu.tw
Chao, A., Ma, K. H., & Hsieh, T. C. (2016). iNEXT (iNterpolation and EXTrapolation). Software for Interpolation and Extrapolation of Species Diversity. http://chao.stat.nthu.edu.tw/wordpress/software_download/
Chébez, J. C. (2005). Guía de las reservas naturales de la Argentina. Noroeste. Buenos Aires: Albatros.
Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples (Version 9.1). http://viceroy.eeb.uconn.edu/estimates/
Ellis, D. (1985). Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin, 16(12), 459.
Escorcia, R. Y., Martínez, N. J., & Silva, J. P. (2012). Study of spiders' diversity in a tropical dry forest (bs-t) in sabanalarga, Atlántico, Colombia. Boletín Científico. Centro de Museos. Museo de Historia Natural, 16(1), 247-260.
Foelix, R. F. (1996). Biology of Spiders (2nd Ed.). New York: Oxford University Press.
González Reyes, A. X., Corronca, J. A., & Arroyo, N. C. (2012). Differences in alpha and beta diversities of epigeous arthropod assemblages in two ecoregions of northwestern Argentina. Zoological Studies, 51(8), 1367-1379.
Grau, R. H., Gasparri, N. I., & Aide, M. (2008). Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Global Change Biology, 14(5), 985-997.
Grismado, C. J., Ramírez, M. J., & Izquierdo, M. A. (2014). Araneae: Taxonomía, diversidad y clave de identificación de familias de la Argentina. En S. Roig-Juñent, L. E. Claps, & J. J. Morrone (Eds.), Biodiversidad de Artrópodos Argentinos Vol. 3 (pp. 55-93). San Miguel de Tucumán: Editorial INSUE-Universidad Nacional de Tucumán.
Groc, S., Delabie, J. H., Longino, J. T., Orivel, J., Majer, J. D., Vasconcelos, H. L., & Dejean, A. (2010). A new method based on taxonomic sufficiency to simplify studies on Neotropical ant assemblages. Biological Conservation, 143(11), 2832-2839.
Haddad, C. R., Honiball, A. S., Dippenaar-Schoeman, A. S., Slotow, R., & Van Rensburg, B. J. (2009). Spiders as potential indicators of elephant-induced habitat changes in endemic sand forest, Maputaland, South Africa. African Journal of Ecology, 48(2), 446-460.
Hajian-Forooshani, Z., Gonthier, D. J., Marín, L., Iverson, A. L., & Perfecto, I. (2014). Changes in species diversity of arboreal spiders in Mexican coffee agroecosystems: untangling the web of local and landscape influences driving diversity. PeerJ, 2, e623. https://doi.org/10.7717/peerj.623
Hammer, Ø., Harper, D.A.T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 9.
Hsieh, Y. L., & Linsenmair, K. E. (2011). Underestimated spider diversity in a temperate beech forest. Biodiversity and Conservation, 20(13), 2953-2965.
Hsieh, Y. L., & Linsenmair, K. E. (2012). Seasonal dynamics of arboreal spider diversity in a temperate forest. Ecology and Evolution, 2(4), 768-777.
Hsieh, Y. L., Lin, Y.-S., & Tso, I.-M. (2003). Ground spider diversity in the Kenting uplifted coral reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodiversity and Conservation, 12, 2173-2194.
Jaksic, F., Marquet, P., & González, H. (1997). Una perspectiva ecológica sobre el uso del agua en el Norte Grande. Estudios Públicos, 68, 171-195.
Janzen, D. H., Ataroff, M., Fariñas, M., Reyes, S., Rincon, N., Soler, A., Soriano, P., & Vera, M. (1976). Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica, 8(3), 193-203.
Jiménez-Valverde, A., & Lobo, J. M. (2007). Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecological Entomology, 32(1), 113-122.
Kallimanis, A. S., Mazaris, A. D., Tsakanikas, D., Dimopoulos, P., Pantis, J. D., & Sgardelis, S. P. (2012). Efficient biodiversity monitoring: Which taxonomic level to study? Ecological Indicators, 15(1), 100-104.
Krell, F. T. (2004). Parataxonomy vs. taxonomy in biodiversity studies-pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation, 13(4), 795-812.
Labraga, J. C., & Villalba, R. (2009). Climate in the Monte Desert: past trends, present conditions, and future projections. Journal of Arid Environments, 73(2), 154-163.
Landeiro, V. L., Bini, L. M., Costa, F. R., Franklin, E., Nogueira, A., de Souza, J. L., Moraes, J., & Magnusson, W. E. (2012). How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators, 23, 366-373.
Lawton, J. H., MacGarvin, M., & Heads, P. A. (1987). Effects of altitude on the abundance and species richness of insect herbivores on bracken. Journal of Animal Ecology, 56, 147-160.
Lubin, Y. D. (1978). Seasonal abundance and diversity of web-building spiders in relation to habitat structure on Barro Colorado Island, Panama. Journal of Arachnology, 6, 31-51.
Magnusson, W. E. (2004). Ecoregion as a pragmatic tool. Conservation Biology, 18, 4-5.
McCune, B., & Mefford, M. J. (1999). PC-Ord. Multivariate Analysis of Ecological Data (Version 5.0). Gleneden Beach, Oregon, USA: MjM Software Design.
Moglia, J. G., & Giménez, A. (1998). Rasgos característicos del hidrosistema de las leñosas de la Región Chaqueña. Revista de Investigaciones Agrarias - Sistemas y Recursos Forestales. España, 7, 41-53.
Morello, J. (2012). Ecorregión del Chaco Seco. En J. Morello, S. D. Matteucci, A. F. Rodriguez, & M. E. Silva (Eds.), Ecorregiones y Complejos Ecosistémicos Argentinos (pp. 151-204). Buenos Aires: Orientación Gráfica.
Moreno, C. E., & Halffter, G. (2000). Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology, 37(1), 149-158.
Mosca Torres, M. E., & Puig, S. (2010). Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina): Are they optimal foragers? Journal of Arid Environments, 74(4), 450-457.
Muñoz-Gutiérrez, J. A., Roussea, G. X., Andrade-Silva, J., & Delabie, J. H. C. (2017) Ants’ higher taxa as surrogates of species richness in a chronosequence of fallows, old-grown forests and agroforestry systems in the Eastern Amazon, Brazil. Revista de Biología Tropical, 65(1), 279-291.
New, T. R. (1996). Taxonomic focus and quality control in insect surveys for biodiversity conservation. Australian Journal of Entomology, 35(2), 97-106.
Olson, D. M., & Dinerstein, E. (1998). The global 200: a representation approach to conserving Earth’s most biologically valuable ecoregions. Conservation Biology, 12, 502-515.
Olson, D. M., & Dinerstein, E. (2002). The Global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical garden, 89, 199-224.
Pedley, S. M., Oxbrough, A., Martin, R. D., Irwin, S., Kelly, T. C., & O’Halloran, J. (2016). Can ground-based assessments of forest biodiversity reflect the biological condition of canopy assemblages? Forest Ecology and Management, 359, 190-198.
Pik, A. J., Oliver, I. A. N., & Beattie, A. J. (1999). Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Australian Journal of Ecology, 24(5), 555-562.
Piquer-Rodríguez, M., Torella, S., Gavier-Pizarro, G., Volante, J., Somma, D., Ginzburg, R., & Kuemmerle, T. (2015). Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landscape Ecology, 30(5), 817-833.
Polis, G. A., & Yamashita, T. (1991). The ecology and importance of predaceous arthropods in desert communities. In G. A. Polis (Ed.), The ecology of desert communities (pp. 180-222). Tucson: The University of Arizona Press.
Porto, W., Pequeno, P. A. L., & Tourinho, A. L. (2016). When less means more: Reduction of both effort and survey methods boosts efficiency and diversity of harvestmen in a tropical forest. Ecological Indicators, 69, 771-779.
Reboratti, C. (2006). Situación ambiental en las ecorregiones Puna y Altos Andes. En A. Brown, U. Martínez Ortiz, M. Acerbi, & J. Corcuera (Eds.), La Situación Ambiental Argentina 2005 (pp. 28-31). Buenos Aires: Fundación Vida Silvestre Argentina.
Rodriguez-Artigas, S. M., Ballester, R., & Corronca, J. A. (2016). Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands. PeerJ, 4, e1946. DOI:10.7717/peerj.1946
Rubio, G. D., & Moreno, C. E. (2010). Orb-weaving spider diversity in the Iberá Marshlands, Argentina. Neotropical Entomology, 39(4), 496-505.
Rundel, P., Villagra, P. E., Dillon, M. O., Roig-Juñent, S. A., & Debandi, G. (2007). Arid and SemiArid Ecosystems. In T. T. Veblen, K. Young, & A. Orme (Eds.), The physical geography of South America (pp. 158-183). New York: Oxford University Press.
Siewers, J., Schirmel, J., & Buchholz, S. (2014). The efficiency of pitfall traps as a method of sampling epigeal arthropods in litter rich forest habitats. European Journal of Entomology, 111(1), 69-74.
Silva, D. (1992). Observations on the diversity and distribution of the spiders of Peruvian montane forests. Memorias del Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, 21, 31-37.
Souza, J. L. P., Baccaro, F. B., Landeiro, V. L., Franklin, E., Magnusson, W. E., Pequeno, P. A. C. L., & Fernandes, I. O. (2016). Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distributions, 22(1), 111-122.
Spence, J. R., & Niemelä, J. (1994). Sampling carabid assemblages with pitfall traps: the madness and the method. Canadian Entomologist, 126, 881-894.
Sudhikumar, A. V. (2015). Distribution pattern of spiders along an elevational gradient in Nelliyampathy Hill Ranges of the Western Ghats, Kerala, India. International Journal of Science and Research, 4(7), 170-173.
Taucare-Ríos, A. (2012). Arañas epigeas (Araneae) en el Parque Nacional Volcán Isluga, Altiplano chileno. Brenesia, 78, 50-57.
Timms, L. L., Bowden, J. J., Summerville, K. S., & Buddle, C. M. (2013). Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conservation and Diversity, 6(4), 453-462.
Torres, V. M., González-Reyes, A. X., Rodriguez-Artigas, S. M., & Corronca, J. A. (2016). Efectos del disturbio antrópico sobre las poblaciones de Leprolochus birabeni (Araneae, Zodariidae) en el Chaco Seco del noroeste de Argentina. Iheringia, Série Zoologia, 106, e2016009. DOI:10.1590/1678-4766e2016009
Whitmore, C., Crouch, T. E., & Slotow, R. H. (2002). Conservation of biodiversity in urban environments: invertebrates on structurally enhanced road islands. African Entomology, 10, 113-126.
Williams, P. H., & Gaston, K. J. (1994). Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation, 67(3), 211-217.
World Spider Catalog. (2017). World Spider Catalog, Version 17.5. Natural History Museum Bern. Obtenido de http://wsc.nmbe.ch
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Revista de Biología Tropical