Resumen
El incremento de la degradación de los hábitats naturales ha fortalecido la necesidad de conocer y evaluar los patrones de biodiversidad; siendo los inventarios biológicos y la suficiencia taxonómica herramientas que permiten describir y monitorear la diversidad en cortos períodos de tiempo. El estudio de la araneofauna en el norte Argentino es escaso en particular en ecorregiones donde se considera prioritario conservar sus ambientes. Las arañas son utilizadas como taxón indicador para comparar patrones de biodiversidad, donde el estudio de las familias y de los gremios puede potencialmente servir como sustitutos ecológicos de las especies dando indicación del uso del hábitat y de las estrategias de forrajeo. En este estudio, analizamos la diversidad alfa y beta de las comunidades de arañas epigeas en diferentes ecorregiones de la provincia de Salta (Chaco Serrano, Monte de Sierras y Bolsones, y Puna) utilizando trampas de caída y muestreos en las cuatro estaciones del año; y testeamos si el nivel taxonómico familia, en el caso de las arañas, puede actuar como potencial sustituto del nivel especie en las evaluaciones rápidas de biodiversidad. Para ello, en cada ecorregión seleccionamos tres sitios ampliamente separados que fueron muestreados durante el otoño, invierno, primavera y verano del 2005-2007. En cada sitio se colocaron 10 trampas de caída separadas por 10 m a lo largo de una transecta lineal y con una actividad de 7 días por estación. Se recolectaron 886 arañas de 100 especies/morfoespecies correspondientes a 19 familias. La ecorregión Chaco (S = 56, N = 495) reportó la mayor riqueza de especies y abundancia comparada con el Monte (S = 44, N = 262) y la Puna (S = 23, N = 129). La completitud del inventario obtenido para cada ecorregión fue completa, superando el 70 %. La diversidad alfa y beta evidenciaron que las comunidades ecorregionales de arañas fueron diferentes. Las estaciones más frías (otoño e invierno) demostraron ser claves a la hora de evaluar la diversidad de arañas en las ecorregiones, aportando a la diversidad regional conjuntamente con la diversidad de las estaciones cálidas (primavera y verano). Además, el nivel taxonómico de familia evidenció reflejar, de igual manera que el nivel especie, los cambios en la diversidad alfa y beta. El uso de trampas de caída en todas las estaciones del año y el reconocimiento de las familias de arañas para la fauna epigea son de gran utilidad para realizar futuras evaluaciones rápidas de biodiversidad en el área en estudio; permitiendo así incorporar este grupo taxonómico en los estudios de monitoreo de biodiversidad que se lleven a cabo en estas ecorregiones.
Citas
Avalos, G., Rubio, G. D., Bar, M. E., & González, A. (2007). Arañas (Arachnida: Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Revista de Biología Tropical, 55, 899-909.
Azevedo, G. H., Faleiro, B. T., Magalhães, I. L., Benedetti, A. R., Oliveira, U., Pena Barbosa, J. P., Santos, M. T., Vilela, P. F., De Maria, M., & Santos, A. J. (2014). Effectiveness of sampling methods and further sampling for accessing spider diversity: a case study in a Brazilian Atlantic rainforest fragment. Insect Conservation and Diversity, 7(4), 381-391.
Bertonatti, C., & Corcuera, J. (2000). Situación Ambiental Argentina. 2000. Buenos Aires: Fundación Vida Silvestre.
Bizuet-Flores, M. Y., Jiménez-Jiménez, M. L., Zavala-Hurtado, A., & Corcuera, P. (2015). Diversity patterns of ground dwelling spiders (Arachnida: Araneae) in five prevailing plant communities of the Cuatro Ciénegas Basin, Coahuila, Mexico. Revista Mexicana de Biodiversidad, 86, 153-163.
Bourass, E. M., Shaibi, T., Elkrwe, H. M., Ghana, S., & Swehli, A. I. (2014). Spider fauna (Araneae) of Abu Ghilan National Nark, north-western Libya. Indian Society of Arachnology, 3(2), 6-16.
Bowden, J. J., & Buddle, C. M. (2010). Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic, 63(3), 261-272.
Brennan, K. E., Ashby, L., Majer, J. D., Moir, M. L., & Koch, J. M. (2006). Simplifying assessment of forest management practices for invertebrates: How effective are higher taxon and habitat surrogates for spiders following prescribed burning? Forest Ecology and Management, 231(1), 138-154.
Buchholz, S. (2010). Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodiversity and Conservation, 19, 2565-2595.
Cabrera, A. L. (1957). La vegetación de la Puna Argentina. Revista de Investigaciones Agrícolas, 11(4), 317-512.
Cardoso, P. (2009). Standardization and optimization of arthropod inventories-the case of Iberian spiders. Biodiversity and Conservation, 18, 3949-3962.
Cardoso, P., Pekár, S., Jocque, R., & Coddington, J. A. (2011). Global patterns of guild composition and functional diversity of spiders. PLoS ONE, 6, e21710. DOI:10.1371/journal.pone.0021710
Cardoso, P., Scharff, N., Gaspar, C., Henriques, S. S., Carvalho, R., Castro, P. H., Schmidt JB, Silva I, Szuts T, De Castro A., & Crespo, L. C. (2008). Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest. Insect Conservation and Diversity, 1(2), 71-84.
Cardoso, P., Silva, I., De Oliveira, N. G., & Serrano, A. R. (2007). Seasonality of spiders (Araneae) in Mediterranean ecosystems and its implications in the optimum sampling period. Ecological Entomology, 32(5), 516-526.
Castanheira, P., Pérez-González, A., & Baptista, R. L. (2016). Spider diversity (Arachnida: Araneae) in Atlantic Forest areas at Pedra Branca State Park, Rio de Janeiro, Brazil. Biodiversity Data Journal, 4, e7055. DOI: 10.3897/BDJ.4.e7055
Cava, M. B., Corronca, J. A., & Echeverría, A. J. (2013). Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina. Revista de Biología Tropical, 61(4), 1785-1798.
Chatzaki, M., Trichas, A., Markakis, G., & Mylonas, M. (1998). Seasonal activity of the ground spider fauna in a Mediterranean ecosystem (Mt Youchtas, Crete, Grece). Proceedings of the 17th European Colloquium of Arachnology, 235-243.
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
Chao, A., & Shen, T. (2003-2005). Program SPADE. Species Prediction and Diversity Estimation. http://chao.stat.nthu.edu.tw
Chao, A., Ma, K. H., & Hsieh, T. C. (2016). iNEXT (iNterpolation and EXTrapolation). Software for Interpolation and Extrapolation of Species Diversity. http://chao.stat.nthu.edu.tw/wordpress/software_download/
Chébez, J. C. (2005). Guía de las reservas naturales de la Argentina. Noroeste. Buenos Aires: Albatros.
Colwell, R. K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples (Version 9.1). http://viceroy.eeb.uconn.edu/estimates/
Ellis, D. (1985). Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin, 16(12), 459.
Escorcia, R. Y., Martínez, N. J., & Silva, J. P. (2012). Study of spiders' diversity in a tropical dry forest (bs-t) in sabanalarga, Atlántico, Colombia. Boletín Científico. Centro de Museos. Museo de Historia Natural, 16(1), 247-260.
Foelix, R. F. (1996). Biology of Spiders (2nd Ed.). New York: Oxford University Press.
González Reyes, A. X., Corronca, J. A., & Arroyo, N. C. (2012). Differences in alpha and beta diversities of epigeous arthropod assemblages in two ecoregions of northwestern Argentina. Zoological Studies, 51(8), 1367-1379.
Grau, R. H., Gasparri, N. I., & Aide, M. (2008). Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Global Change Biology, 14(5), 985-997.
Grismado, C. J., Ramírez, M. J., & Izquierdo, M. A. (2014). Araneae: Taxonomía, diversidad y clave de identificación de familias de la Argentina. En S. Roig-Juñent, L. E. Claps, & J. J. Morrone (Eds.), Biodiversidad de Artrópodos Argentinos Vol. 3 (pp. 55-93). San Miguel de Tucumán: Editorial INSUE-Universidad Nacional de Tucumán.
Groc, S., Delabie, J. H., Longino, J. T., Orivel, J., Majer, J. D., Vasconcelos, H. L., & Dejean, A. (2010). A new method based on taxonomic sufficiency to simplify studies on Neotropical ant assemblages. Biological Conservation, 143(11), 2832-2839.
Haddad, C. R., Honiball, A. S., Dippenaar-Schoeman, A. S., Slotow, R., & Van Rensburg, B. J. (2009). Spiders as potential indicators of elephant-induced habitat changes in endemic sand forest, Maputaland, South Africa. African Journal of Ecology, 48(2), 446-460.
Hajian-Forooshani, Z., Gonthier, D. J., Marín, L., Iverson, A. L., & Perfecto, I. (2014). Changes in species diversity of arboreal spiders in Mexican coffee agroecosystems: untangling the web of local and landscape influences driving diversity. PeerJ, 2, e623. https://doi.org/10.7717/peerj.623
Hammer, Ø., Harper, D.A.T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 9.
Hsieh, Y. L., & Linsenmair, K. E. (2011). Underestimated spider diversity in a temperate beech forest. Biodiversity and Conservation, 20(13), 2953-2965.
Hsieh, Y. L., & Linsenmair, K. E. (2012). Seasonal dynamics of arboreal spider diversity in a temperate forest. Ecology and Evolution, 2(4), 768-777.
Hsieh, Y. L., Lin, Y.-S., & Tso, I.-M. (2003). Ground spider diversity in the Kenting uplifted coral reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodiversity and Conservation, 12, 2173-2194.
Jaksic, F., Marquet, P., & González, H. (1997). Una perspectiva ecológica sobre el uso del agua en el Norte Grande. Estudios Públicos, 68, 171-195.
Janzen, D. H., Ataroff, M., Fariñas, M., Reyes, S., Rincon, N., Soler, A., Soriano, P., & Vera, M. (1976). Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica, 8(3), 193-203.
Jiménez-Valverde, A., & Lobo, J. M. (2007). Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecological Entomology, 32(1), 113-122.
Kallimanis, A. S., Mazaris, A. D., Tsakanikas, D., Dimopoulos, P., Pantis, J. D., & Sgardelis, S. P. (2012). Efficient biodiversity monitoring: Which taxonomic level to study? Ecological Indicators, 15(1), 100-104.
Krell, F. T. (2004). Parataxonomy vs. taxonomy in biodiversity studies-pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation, 13(4), 795-812.
Labraga, J. C., & Villalba, R. (2009). Climate in the Monte Desert: past trends, present conditions, and future projections. Journal of Arid Environments, 73(2), 154-163.
Landeiro, V. L., Bini, L. M., Costa, F. R., Franklin, E., Nogueira, A., de Souza, J. L., Moraes, J., & Magnusson, W. E. (2012). How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecological Indicators, 23, 366-373.
Lawton, J. H., MacGarvin, M., & Heads, P. A. (1987). Effects of altitude on the abundance and species richness of insect herbivores on bracken. Journal of Animal Ecology, 56, 147-160.
Lubin, Y. D. (1978). Seasonal abundance and diversity of web-building spiders in relation to habitat structure on Barro Colorado Island, Panama. Journal of Arachnology, 6, 31-51.
Magnusson, W. E. (2004). Ecoregion as a pragmatic tool. Conservation Biology, 18, 4-5.
McCune, B., & Mefford, M. J. (1999). PC-Ord. Multivariate Analysis of Ecological Data (Version 5.0). Gleneden Beach, Oregon, USA: MjM Software Design.
Moglia, J. G., & Giménez, A. (1998). Rasgos característicos del hidrosistema de las leñosas de la Región Chaqueña. Revista de Investigaciones Agrarias - Sistemas y Recursos Forestales. España, 7, 41-53.
Morello, J. (2012). Ecorregión del Chaco Seco. En J. Morello, S. D. Matteucci, A. F. Rodriguez, & M. E. Silva (Eds.), Ecorregiones y Complejos Ecosistémicos Argentinos (pp. 151-204). Buenos Aires: Orientación Gráfica.
Moreno, C. E., & Halffter, G. (2000). Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology, 37(1), 149-158.
Mosca Torres, M. E., & Puig, S. (2010). Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina): Are they optimal foragers? Journal of Arid Environments, 74(4), 450-457.
Muñoz-Gutiérrez, J. A., Roussea, G. X., Andrade-Silva, J., & Delabie, J. H. C. (2017) Ants’ higher taxa as surrogates of species richness in a chronosequence of fallows, old-grown forests and agroforestry systems in the Eastern Amazon, Brazil. Revista de Biología Tropical, 65(1), 279-291.
New, T. R. (1996). Taxonomic focus and quality control in insect surveys for biodiversity conservation. Australian Journal of Entomology, 35(2), 97-106.
Olson, D. M., & Dinerstein, E. (1998). The global 200: a representation approach to conserving Earth’s most biologically valuable ecoregions. Conservation Biology, 12, 502-515.
Olson, D. M., & Dinerstein, E. (2002). The Global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical garden, 89, 199-224.
Pedley, S. M., Oxbrough, A., Martin, R. D., Irwin, S., Kelly, T. C., & O’Halloran, J. (2016). Can ground-based assessments of forest biodiversity reflect the biological condition of canopy assemblages? Forest Ecology and Management, 359, 190-198.
Pik, A. J., Oliver, I. A. N., & Beattie, A. J. (1999). Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Australian Journal of Ecology, 24(5), 555-562.
Piquer-Rodríguez, M., Torella, S., Gavier-Pizarro, G., Volante, J., Somma, D., Ginzburg, R., & Kuemmerle, T. (2015). Effects of past and future land conversions on forest connectivity in the Argentine Chaco. Landscape Ecology, 30(5), 817-833.
Polis, G. A., & Yamashita, T. (1991). The ecology and importance of predaceous arthropods in desert communities. In G. A. Polis (Ed.), The ecology of desert communities (pp. 180-222). Tucson: The University of Arizona Press.
Porto, W., Pequeno, P. A. L., & Tourinho, A. L. (2016). When less means more: Reduction of both effort and survey methods boosts efficiency and diversity of harvestmen in a tropical forest. Ecological Indicators, 69, 771-779.
Reboratti, C. (2006). Situación ambiental en las ecorregiones Puna y Altos Andes. En A. Brown, U. Martínez Ortiz, M. Acerbi, & J. Corcuera (Eds.), La Situación Ambiental Argentina 2005 (pp. 28-31). Buenos Aires: Fundación Vida Silvestre Argentina.
Rodriguez-Artigas, S. M., Ballester, R., & Corronca, J. A. (2016). Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands. PeerJ, 4, e1946. DOI:10.7717/peerj.1946
Rubio, G. D., & Moreno, C. E. (2010). Orb-weaving spider diversity in the Iberá Marshlands, Argentina. Neotropical Entomology, 39(4), 496-505.
Rundel, P., Villagra, P. E., Dillon, M. O., Roig-Juñent, S. A., & Debandi, G. (2007). Arid and SemiArid Ecosystems. In T. T. Veblen, K. Young, & A. Orme (Eds.), The physical geography of South America (pp. 158-183). New York: Oxford University Press.
Siewers, J., Schirmel, J., & Buchholz, S. (2014). The efficiency of pitfall traps as a method of sampling epigeal arthropods in litter rich forest habitats. European Journal of Entomology, 111(1), 69-74.
Silva, D. (1992). Observations on the diversity and distribution of the spiders of Peruvian montane forests. Memorias del Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, 21, 31-37.
Souza, J. L. P., Baccaro, F. B., Landeiro, V. L., Franklin, E., Magnusson, W. E., Pequeno, P. A. C. L., & Fernandes, I. O. (2016). Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distributions, 22(1), 111-122.
Spence, J. R., & Niemelä, J. (1994). Sampling carabid assemblages with pitfall traps: the madness and the method. Canadian Entomologist, 126, 881-894.
Sudhikumar, A. V. (2015). Distribution pattern of spiders along an elevational gradient in Nelliyampathy Hill Ranges of the Western Ghats, Kerala, India. International Journal of Science and Research, 4(7), 170-173.
Taucare-Ríos, A. (2012). Arañas epigeas (Araneae) en el Parque Nacional Volcán Isluga, Altiplano chileno. Brenesia, 78, 50-57.
Timms, L. L., Bowden, J. J., Summerville, K. S., & Buddle, C. M. (2013). Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conservation and Diversity, 6(4), 453-462.
Torres, V. M., González-Reyes, A. X., Rodriguez-Artigas, S. M., & Corronca, J. A. (2016). Efectos del disturbio antrópico sobre las poblaciones de Leprolochus birabeni (Araneae, Zodariidae) en el Chaco Seco del noroeste de Argentina. Iheringia, Série Zoologia, 106, e2016009. DOI:10.1590/1678-4766e2016009
Whitmore, C., Crouch, T. E., & Slotow, R. H. (2002). Conservation of biodiversity in urban environments: invertebrates on structurally enhanced road islands. African Entomology, 10, 113-126.
Williams, P. H., & Gaston, K. J. (1994). Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biological Conservation, 67(3), 211-217.
World Spider Catalog. (2017). World Spider Catalog, Version 17.5. Natural History Museum Bern. Obtenido de http://wsc.nmbe.ch
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2018 Revista de Biología Tropical