Abstract
Echinoid eggs with sizes greater than the gonopore experience strain resulting from compression during spawning, which can damage them affecting fertilization. The aim of this study was to describe gamete characteristics and analyse aspects related to egg strain during spawning of Pseudechinus magellanicus from Golfo Nuevo, Patagonia, Argentina. Mean fresh egg diameter observed was 122 μm with an additional jelly coat of 49 μm. The relationship between gonopore sizes and maximum test diameter showed a positive correlation but egg size did not vary with test diameter, as seen in other sea urchins, indicative of egg strain during spawning. Egg strain calculated from the relationship between egg size and gonopore size was 0.47-0. Eggs of small individuals (<15 mm test diameter) were the most affected by this strain. The egg jelly coat observed in P. magellanicus could protect eggs from strain and shear stress during spawning. Rev. Biol. Trop. 56 (Suppl. 3): 335-339. Epub 2009 January 05.References
Bernasconi, I. 1953. Monografía de los Equinoideos Argentinos. An. Mus. Hist. Nat. 6: 17-18.
Bigatti, G., E.M. Marzinelli, M. Cledón & P.E. Penchaszadeh. 2004. Gonadic cycle of Pseudechinus magellanicus (Philippi, 1857) (Echinoidea: Temnopleuridae) from Patagonia, Argentina, p. 11-14. In T. Heinzeller & J. Nebelsick (eds.). Echinoderms. Taylor & Francis Group, London.
Bolton, T.F. & F.I.M. Thomas. 2002. Physical forces experienced by echinoid eggs in the oviduct during spawning: comparison of the geminate pair Echinometra vanbrunti and Echinometra lucunter. J. Exp. Mar. Biol. Ecol. 267: 123-137.
Bonnell, B.S., S.H. Keller, V.D. Vacquier & D.E. Chandler. 1994. The sea urchin egg jelly coat consists of globular glycoproteins bound to a fibrous fucan superstructure. Develop. Biol. 162: 313-324.
Brögger, M.I., M.I Martinez & P.E. Penchaszadeh. 2003. Reproductive biology of Arbacia dufresnii (Blainville,1825) in Golfo Nuevo, Argentine Sea, p. 165-169. In J.M. Lawrence & O. Guzmán (eds.). Proc. Int. Conf. Sea Urchin Fish. Aquacul.. Lancaster, USA.
Davidson, L.A., G.F. Oster, R.E Keller. & M.A.R. Koehl. 1999. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Develop. Biol. 209: 221-238.
Emlet, R.B. 1989. Apical skeletons of sea urchins (Echinodermata: Echinoidea): two methods for inferring larval development. Paleobiol. 15: 223-254.
Epel, D. 1991. How successful is the fertilization process of the sea urchin egg. Proc. 7th Int. Echinoderm Conf. 1: 51-54.
Guisado, C.B. 1995. Estrategias de desarrollo larval y ciclo de vida en dos especies de equinodermos regulares del sur de Chile. PhD Tesis, Facultad de Ciencias, Instituto de Zoología “Ernest F. Filian”, Universidad Austral de Chile, Chile. 89 p.
Hagström, B.E. 1956. The effect of the jelly coat on fertilization in sea urchins. Exp. Cell Res. 10: 740-743.
Levitan, D.R. 1996. Effects on gamet traits on fertilization in the sea and the evolution of sexual dimorphism. Nature 382: 153-155.
Levitan, D.R. 1998. Sperm limitation, gamete competition, and sexual selection in external fertilizers, p. 175- 217. In T.R. Birkhead & A.P. Moller (eds.). Sperm Competition and Sexual Selection. Academic, San Diego, USA.
Marshall, D.J., C.A. Styan & M.J. Keough. 2002. Sperm environment affects offspring quality in broadcast spawning marine invertebrates. Ecol. Let. 5: 173-176.
Marzinelli, E.M., G. Bigatti, J. Giménez & P.E. Penchaszadeh. 2006. Reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) from Golfo Nuevo, Argentina. Bull. Mar. Sci.79: 127-136.
Miller, D.J. & R.L. Ax. 1990. Carbohydrates and fertilization in animals. Molec. Rep. Develop 26: 184-198.
Nomura, K. & S. Isaka. 1985. Synthetic study of the structure- activity relationship of sperm activating peptides of the jelly coat of sea urchin eggs. Bioche. Biophys. Res. Com. 126: 974-982.
Orler, P.M. 1992. Biología reproductiva comparada de Pseudechinus magellanicus y Loxechinus albus, equinoideos del Canal Beagle. PhD Tesis, Facultad de Ciencias Naturales y Museo Universitario Nacional de La Plata, La Plata, Buenos Aires, Argentina. 182 p.
Penchaszadeh, P.E., G. Bigatti & P. Miloslavich. 2004. Feeding of Pseudechinus magellanicus (Philippi, 1857) (Echinoidea:Temnopleuridae) in the SW Atlantic coast (Argentina). Ophelia 58: 91-99.
Podolsky, R.D. 2001. Evolution of egg target size: an analysis of selection on correlated characters. Evolution 55: 2470-2478.
Podolsky, R.D. 2004. Life-history consequences of investment in free-spawned eggs and their accessory coats. Ame. Nat. 163: 735-753.
SeGall, G.K. & W.J. Lennarz. 1979. Chemical characterization of the component of the jelly coat responsible for the induction of the acrosome reaction. Develop. Biol. 71: 33-48.
Thomas, F.I.M., T.F. Bolton & A.M. Sastry. 2001. Mechanical forces imposed on echinoid eggs during spawning: mitigation of forces by fibrous networks within egg extracellular layers. J. Exp. Biol. 204: 815-821.
Thomas, F.I.M. & T.F. Bolton. 1999. Shear stress experienced by echinoderm eggs in the oviduct during spawning: potential role in the evolution of egg properties. J. Exp. Biol. 202: 3111-3119.
Tyler, P.A. 1986. Studies of a benthic time series reproductive biology of benthic invertebrates in the Rockall Trough. Proc. Royal Soc. Edinburgh 88B: 175-190.
Vaquier, V.D. & G.W. Moy. 1977. Isolation of binding: the protein responsible for adhesion of sperm to sea urchin eggs. Proc. Nat. Acad. Sci. U. S. A. 74: 2456-2460.
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2008 Revista de Biología Tropical