Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Diatom assemblages associated with turtle carapaces in the Neotropical region
XML
PDF
HTML

Keywords

epizoic diatom
Neotropical turtle
carapace
diatom assemblages
trait
Colombia.
epibiontes
diatomeas
tortugas neotropicales
caparazón
rasgos biológicos
Colombia

How to Cite

Donato-Rondon, J. C., González-Trujillo, J. D., Romero, B., & Castro-Rebolledo, M. I. (2018). Diatom assemblages associated with turtle carapaces in the Neotropical region. Revista De Biología Tropical, 66(4), 1362–1372. https://doi.org/10.15517/rbt.v66i4.31396

Abstract

Few studies have explored the ecology and interrelationship with other organisms of the many endangered freshwater turtle species inhabiting the Neotropical region. The focus of the current study was to shed light on the relationship between Neotropical turtle carapaces and primary producers, insofar as the surface of former constitutes a suitable substrate for the colonization and establishment of the latter. The under-explored relationship between turtle carapaces and the diatom assemblages inhabiting them was investigated and characterized in terms of taxonomic and biological traits (bio-volume, life-form, and attachment). The carapaces of seven native turtle species were surveyed. Among these carapaces, a total of 45 diatom taxa were found, and diatom taxa varied among turtle species. Podocnemis vogli and Podocnemis expansa supported more diverse diatom assemblages than Podocnemis lewyana, Rhinoclemmys diademata, and Rhinoclemmys melanosterna, which were dominated by Navicula spp. Analysis, further showed that carapace size did not explain differences in diatom diversity. However, a trait-based analysis suggests that both carapace roughness and an assemblage’s successional stage might explain the differences in assemblage composition. Because turtles can serve as dispersal vectors, characterizing their epibiont diatom assemblages may contribute to our understanding of diatom distribution on larger scales, as well as, give us some clues as to the auto-ecology of turtles that help us to effectively determine conservation areas for these endangered species.

https://doi.org/10.15517/rbt.v66i4.31396
XML
PDF
HTML

References

Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: identification and use as bioindicators. New Yersey, USA: Wiley-Blackwell.

Bergey, E. A. (1999). Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnology and Oceanography, 44(6), 1522-1529.

Bergey, E. A. (2005). How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology, 50(7), 1163-1177.

Caine, E. A. (1986). Carapace epibionts of nesting loggerhead sea turtles: Atlantic coast of USA. Journal of Experimental Marine Biology and Ecology, 95(1), 15-26.

Clarke, K. R. (1993). Non‐parametric multivariate analyses of changes in community structure. Austral Ecology, 18(1), 117-143.

Ersanli, E. T., & Gonulol, A. (2015). Epizoophyte composition on spotted turtle Emys orbicularis (Linnaeus, 1758) in Turkey. Bangladesh Journal of Botany, 43(2), 157-161.

Fachín-Terán, A., Vogt, R. C., & Thorbjarnarson, J. B. (2006). Seasonal movements of Podocnemis sextuberculata (Testudines: Podocnemididae) in the Mamiraua sustainable development reserve, Amazonas, Brazil. Chelonian Conservation and Biology, 5(1), 18-24.

Frick, M. G., & Pfaller, J. B. (2013). Sea turtle epibiosis. In J. Wyneken, K. J. Lohmann, & J. A. Musick (Eds.), The Biology of Sea Turtles (Vol. 3, pp. 399-426). Boca Raton, USA: CRC Press.

Jost, L., Chao, A., & Chazdon, R. L. (2011). Compositional similarity and β (beta) diversity. In A. Magurran & G. J. McGill (Eds.), Biological diversity: frontiers in measurement and assessment (pp. 66-87). New York, USA: Oxford University Press.

Kramer, K., & Lange-Bertalot, H. (1986). Bacillariphyceae, 1. Teil: Naviculaceae. Jena, Germany: Gustav Fisher Verlag.

Kramer, K., & Lange-Bertalot, H. (1991). Bacillariphyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Jena, Germany: Gustav Fisher Verlag.

Kristiansen, J. (1996). Dispersal of freshwater algae – a review. In J. Kristiansen (Ed.), Biogeography of Freshwater Algae (pp. 151-157). Netherlands: Springer Netherlands.

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1-27.

Lange, K., Townsend, C. R., & Matthaei, C. D. (2016). A trait‐based framework for stream algal communities. Ecology and Evolution, 6(1), 23-36.

Liu, J., Soininen, J., Han, B. P., & Declerck, S. A. (2013). Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography, 40(12), 2238-2248.

Majewska, R., Santoro, M., Bolaños, F., Chaves, G., & De Stefano, M. (2015). Diatoms and other epibionts associated with olive ridley (Lepidochelys olivacea) sea turtles from the Pacific Coast of Costa Rica. PloS one, 10(6), e0130351.

Metzeltin, D., & Lange-Bertalot, H. (1998). Tropische Diatomeen in Sudamerika I. 700 uberwiegend wening bekannte oder neue Taxa reprasentativ aals Elemente der neotropischen Flora. Iconographia Diatomologica, 5.

Metzeltin, D. & Lange-Bertalot, H. (2007). Tropical diatoms of South America II. Special remark on biogeographic disjunction. Iconographia Diatomologica, 18, 1-876.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B., Simpson, G. L., ... & Wagner, H. (2010). vegan: Community Ecology Package. R package version 2.4-3. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://CRAN.R-project.org/package=vegan

Páez, V. P., Morales Betancourt, M. A., Lasso, C. A., Castaño Mora, O. V., & Bock, B. (2012). Biología y conservación de las tortugas continentales de Colombia (No. Doc. 26065) CO-BAC, Bogotá). Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Peterson, C. G., & Stevenson, R. J. (1989). Substratum conditioning and diatom colonization in different current regimes. Journal of Phycology, 25(4), 790-793.

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-project.org/

Rhodin, A. G. J., Walde, A. D., Horne, B. D., Van Dijk, P. P., Blanck, T., & Hudson, R. (2011). Turtles in trouble: the world’s 25+ most endangered tortoises and freshwater turtles—2011. Lunenburg, Canada: Turtle Conservation Coalition.

Rumrich, U., Lange-Bertalot, H., & Rumrich, M. (2000). Diatoms of the Andes: From Venezuela to Patagonia/Tierra del Fuego and two additional contributions. Iconographia Diatomologica, 9, 1-673.

Scardino, A. J., Guenther, J., & De Nys, R. (2008). Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling, 24(1), 45-53.

Scardino, A. J., Harvey, E., & De Nys, R. (2006). Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling, 22(1), 55-60.

Souza, F. L., Raizer, J., Da Costa, H. T. M., & Martins, F. I. (2008). Dispersal of Phrynops geoffroanus (Chelidae) in an urban river in central Brazil. Chelonian Conservation and Biology, 7(2), 257-261.

Soylu, E. N., Gönülol, A., Sukatar, A., Ayaz, D., & Tok, C. V. (2006). Epizoic Freshwater Algae on Emys orbicularis (Testudinata: Emydidae) from the Central Anatolia Region of Turkey. Journal of Freshwater Ecology, 21(3), 535-538 DOI: 10.1080/02705060.2006.9665033

Stamps, J. A., & Swaisgood, R. R. (2007). Someplace like home: experience, habitat selection and conservation biology. Applied Animal Behaviour Science, 102(3), 392-409.

Stevenson, R. J., Bothwell, M. L., Lowe, R. L., & Thorp, J. H. (1996). Algal ecology: Freshwater benthic ecosystem. Cambridge, USA: Academic Press.

Sweat, L. H., & Johnson, K. B. (2013). The effects of fine-scale substratum roughness on diatom community structure in estuarine biofilms. Biofouling, 29(8), 879-890.

Tiffany, M. I. (2011). Epizoic and epiphytic diatoms. In J. Seckbach & J. P. Kociolek (Eds.), Cellular origin, life in extreme habitats and astrobiology volume 19: the diatom world (pp. 195-209). London, England: Springer Publishing House.

Tumlison, R., & Clark, S. (1996). Microorganisms associated with the carapace and plastron of aquatic turtles (Pseudemys concinna and Trachemys scripta) in southwestern Arkansas. Journal of the Arkansas Academy of Science, 50(1), 148-152.

Wetzel, C. E., Van de Vijver, B., Cox, E. J., Bicudo, D. D. C., & Ector, L. (2012). Tursiocola podocnemicola sp. nov., a new epizoic freshwater diatom species from the Rio Negro in the Brazilian Amazon Basin. Diatom research, 27(1), 1-8.

Wetzel, C. E., Van de Vijver, B., & Ector, L. (2010). Luticola deniseae sp. nov. a new epizoic diatom from the Rio Negro (Amazon hydrographic basin). Vie et Milieu Life and Environment, 60(3), 177.

Wu, S. C., & Bergey, E. A. (2017). Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages. PloS one, 12(2), e0171910.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.