Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Diel acoustic variation in Hyalinobatrachium fleischmanni (Anura: Centrolenidae) in urban habitat with different anthropogenic noise levels.
PDF
HTML

Keywords

acoustic communication; advertisement song; anuran; diel patterns; urban areas.
anuros; área urbana; canto de anuncio; ciclos de actividad; comunicación acústica.

How to Cite

Gutiérrez-Vannucchi, A.-C., Rodríguez-Umaña, P., Sandoval, L., & García-Rodríguez, A. (2019). Diel acoustic variation in Hyalinobatrachium fleischmanni (Anura: Centrolenidae) in urban habitat with different anthropogenic noise levels. Revista De Biología Tropical, 67(S2), S249–S258. https://doi.org/10.15517/rbt.v67i2SUPL.37237

Abstract

Acoustic signals produced by animals can be masked by natural or anthropogenic environmental noise. A high proportion of the current distribution of the glass-frog Hyalinobatrachium fleischmanni (Centrolenidae) overlaps with noisy urban habitats, and this may affect the species acoustic communication. In this work, we analyzed the relationship between changes in anthropogenic noise level throughout the night and the diel acoustic variation (vocalization per time) in H. fleischmanni, within three sites with different noise level. We conducted this study in three sites inside the Rodrigo Facio University Campus, San José, Costa Rica in June 2015. We used an automated recorder per site to record glass-frog vocalizations, from 17:00 to 6:00 h, during two consecutive days, every two weeks, for a month. Simultaneously, we measured the noise levels in dB each hour using a soundmeter. We used linear mixed models to compare the vocalization mean per hour against the noise levels per hour and site. Our results showed that noise levels and H. fleischmanni acoustic activity varied throughout the night. The H. fleischmanni acoustic activity at the noisier site was different from sites with lower noise levels. The highest acoustic activity was found in the less noisy site throughout the sampled period. Although we fail to found a direct relationship between noise level and H. fleischmanni acoustic activity, noise level variation affects vocal activity pattern in this species.

https://doi.org/10.15517/rbt.v67i2SUPL.37237
PDF
HTML

References

Alonso, R., Rodríguez-Gómez, A., & Estrada, A. R. (2001). Patrones de actividad acústica y trófica de machos cantores de Eleutherodactylus eileenae (Anoura: Leptodactylidae). Revista Española de Herpetología, 15, 45-52.

Amézquita, A., Hödl, W., Lima, A. P., Castellanos, L., Erdtmann, L., &Araújo, M. C. (2006). Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution, 60, 1874-1887.

Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25, 180-189.

Bermúdez-Cuamatzin, E., Ríos-Chelén, A. A., Gil, D., & García, C. M. (2011). Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters, 7, 36-38.

Biamonte, E., Sandoval, L., Chacón, E., & Barrantes, G. (2011). Effect of urbanization on the avifauna in a tropical metropolitan area. Landscape Ecology, 26, 183-194.

Boncoraglio, G., & Saino, N. (2007). Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Functional Ecology, 21, 134-142.

Both, C., & Grant, T. (2012). Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biology Letters, 8, 714-716.

Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication. Sunderland: Sinauer.

Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151-209.

Catchpole, C. K., & Slater, P. J. (2003). Bird song: biological themes and variations. Cambridge: Cambridge University Press.

Cunnington, G. M., & Fahrig, L. (2010). Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 36, 463-470.

Ey, E., & Fischer, J. (2009). The “acoustic adaptation hypothesis” -a review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21-48.

Gerhardt, H. C., & Klump, G. M. (1988). Masking of acoustic signals by the chorus background noise in the green tree frog: a limitation on mate choice. Animal Behaviour, 36, 1247-1249.

Gross, K., Pasinelli, G.,&Kunc, H. P. (2010). Behavioral plasticity allows short-term adjustment to a novel environment. American Naturalist, 176, 456-464.

Halfwerk, W., Bot, S., Buikx, J., van der Velde, M., Komdeur, J., ten Cate, C., & Slabbekoorn, H. (2011). Low-frequency songs lose their potency in noisy urban conditions. Proceedings of the National Academy of Sciences, 35, 14549-14554.

Hanna, D. E., Wilson, D. R., Blouin-Demers, G., & Mennill, D. J. (2014). Spring peepers Pseudacris crucifer modify their call structure in response to noise. Current Zoology, 60, 438-448.

Harris, L. D. (1984). The fragmented forest: island biogeography theory and the preservation of biotic diversity. Chicago: University of Chicago Press.

Hayes, M. P. (1991). A study of clutch attendance in the Neotropical frog Centrolenella fleischmanni (Anura: Centrolenidae) (Doctoral dissertation). University of Miami, USA.

Herrera-Montes, M. I., & Aide, T. M. (2011). Impacts of traffic noise on anuran and bird communities. Urban Ecosystem, 14, 415-427.

Kaiser, K., & Hammers, J. L. (2009). The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour, 146, 1053-1069.

Kubicki, B. (2007). Ranas de vidrio Costa Rica. Heredia, Costa Rica: INBio.

Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 143, 1635-1645.

Lampe, U., Schmoll, T., Franzke, A., & Reinhold, K. (2012). Staying tuned: grasshoppers from noisy roadside habitats produce courtship signals with elevated frequency components. Functional Ecology, 26, 1348-1354.

Langmore, N. E. (1998). Functions of duet and solo songs of female birds. Trends in Ecology & Evolution, 13, 136-140.

Lengagne, T. (2008). Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biological Conservation, 141, 2023-2031.

Melles, S., Glenn, S., & Martin, K. (2003). Urban bird diversity and landscape complexity: species-environment associations along a multiscale habitat gradient. Conservation Ecology, 7, 5.

Oseen, K. L., & Wassersug, R. J. (2002). Environmental factors influencing calling in sympatric anurans. Oecologia, 133, 616-625.

Ospina, O. E., Villanueva-Rivera, L. J., Corrada-Bravo, C. J., & Aide, T. M. (2013). Variable response of anuran calling activity to daily precipitation and temperature: implications for climate change. Ecosphere, 4, 1-12.

Penna, M., Pottstock, H., & Velásquez, N. (2005). Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Animal Behaviour, 70, 639-651.

Redondo, P., Barrantes, G., & Sandoval, L. (2013). Urban noise influences vocalization structure in the House Wren Troglodytes aedon. Ibis, 155, 621-625.

Roy, S., Miller, C. T., Gottsch, D., & Wang, X. (2011). Vocal control by the common marmoset in the presence of interfering noise. Journal of Experimental Biology, 214, 3619-3629.

Savage, J. M. (2002). The Amphibians and Reptiles of Costa Rica. Chicago: University of Chicago Press.

Slabbekoorn, H., & den Boer-Visser, A. (2006). Cities change the songs of birds. Current biology, 16, 2326-2331.

Slabbekoorn, H., & Peet, M. (2003). Bird’s sing at a higher pitch in urban noise: Great tits hit the high notes to ensure that their mating calls are heard above the city’s din. Nature, 424, 267-267.

Sun, J. W. C., & Narins, P. M. (2005). Anthropogenic sounds differentially affect amphibian call rate. Biological Conservation, 121, 419-427.

Vargas-Salinas, F., & Amézquita, A. (2013). Traffic noise correlates with calling time but not spatial distribution in the threatened poison frog Andinobates bombetes. Behaviour, 150, 569-584.

Warren, P. S., Katti, M., Ermann, M., & Brazel, A. (2006). Urban bioacoustics: it’s not just noise. Animal behaviour, 71, 491-502.

Wood, W. E., & Yezerinac, S. M. (2006). Song sparrow (Melospiza melodia) song varies with urban noise. Auk, 123, 650-659.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Revista de Biología Tropical

Downloads

Download data is not yet available.