Abstract
Introduction: Melina (Gmelina arborea) is a tree species of great interest for its wood and medicinal properties. In Costa Rica, there are genetically superior clones that are propagated without knowledge of the ontogenic and physiological age of the materials.
Objective: To evaluate how age influences the content of phenols and lignins in leaves, petioles, stems, and roots of melina plants.
Methods: The total phenolic and lignins contents were determined using Folin-Ciocalteu colorimetric method and alkaline extraction method, respectively. Plants of five different ages were chosen for the investigation (in vitro plants “year 0” and trees of a year and a half, four, seven and 20 years). Sampling was done in March and April 2021.
Results: All parts of the plant analyzed contain phenolic compounds and lignins, regardless of their age. There was no positive correlation between age and phenol and lignin content for any development condition, since the highest values were not obtained in the oldest trees. Leaf extracts from in vitro plants and seven-year-old trees showed, respectively, the highest phenol and lignin contents for all conditions (P < 0.05). The lowest average values of phenolic compounds for all conditions were obtained in four-year-old trees. Regarding lignins, the lowest content occurred in the oldest roots, although the trend was not maintained for the rest of the plant parts.
Conclusions: This study provides the first results of the content of phenolic compounds and lignins present in different tissues of a forest species of different ages. Therefore, they are the first reference values about the biochemical commitment for phenolic synthesis according to the age and the specific developmental stage of a woody plant.
References
Ahlert, D., Ruf, S., & Bock, R. (2003). Plastid protein synthesis is required for plant development in tobacco. PNAS, 100(26), 15730–15735. https://doi.org/10.1073/pnas.2533668100
Amoo, S. O., Aremu, A. O., & van Staden, J. (2012). In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell, Tissue and Organ Culture, 111(3), 345–358. https://doi.org/10.1007/s11240-012-0200-3
Araya, E. (2005). Relaciones genéticas en una colección de clones de Gmelina arborea (Roxb) reveladas con marcadores AFLP. Revista Forestal Mesoamericana Kurú, 2(6), 1–14.
Ávila-Arias, C., Murillo-Cruz, R., & Murillo-Gamboa, O. (2015). Selección de clones superiores de dos conjuntos genéticos de Gmelina arborea en el Pacífico Sur de Costa Rica. Revista de Ciencias Ambientales, 49(1), 17–35. https://doi.org/10.15359/rca.49-1.2
Ávila-Arias, C., Salas-Rodríguez, A., & Murillo-Cruz, R. (2016). Selección de genotipos superiores de Gmelina arborea Roxb. por su heredabilidad genética a la tolerancia de la enfermedad de pudrición del tronco, Pacífico sur de Costa Rica. Revista Forestal Mesoamericana Kurú, 13(32), 11–20. https://doi.org/10.18845/rfmk.v0i0.2548
Bräutigam, K., Vining, K. J., Lafon-Placette, C., Fossdal, C. G., Mirouze, M., Marcos, J. G., Fluch, S., Fraga, M. F., Guevara, M. Á., Abarca, D., Johnsen, Ø., Maury, S., Strauss, S. H., Campbell, M. M., Rohde, A., Díaz-Sala, C., & Cervera, M. T. (2013). Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 3(2), 399–415. https://doi.org/10.1002/ece3.461
Covelo, F., & Gallardo, A. (2001). Temporal variation in total leaf phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain. Canadian Journal of Botany, 79(11), 1262–1269. https://doi.org/10.1139/b01-109
Debnath, S. C., & Goyali, J. C. (2020). In vitro propagation and variation of antioxidant properties in micropropagated Vaccinium berry plants-A review. Molecules, 25(4), 788. https://doi.org/10.3390/molecules25040788
Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, I. C. F. R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82, 9–22. https://doi.org/10.1016/j.indcrop.2015.12.016
Dubravina, G. A., Zaytseva, S. M., & Zagoskina, N. V. (2005). Changes in formation and localization of phenolic compounds in the tissues of European and Canadian yew during dedifferentiation In Vitro. Russian Journal of Plant Physiology, 52(5), 672–678. https://doi.org/10.1007/s11183-005-0100-z
Dutta, S., & Ray, S. (2020). Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. Journal of King Saud University - Science, 32(1), 643–647. https://doi.org/10.1016/j.jksus.2018.09.015
Dvorak, W. S. (2004). World view of Gmelina arborea: Opportunities and challenges. New Forests, 28(2–3), 111–126. https://doi.org/10.1023/B:NEFO.0000040940.32574.22
Fernandez-Lorenzo, J. L., Rigueiro, A., & Ballester, A. (1999). Polyphenols as potential markers to differentiate juvenile and mature chestnut shoot cultures. Tree Physiology, 19(7), 461–466. https://doi.org/10.1093/treephys/19.7.461
Filová, A. (2014). Production of secondary metabolites in plant tissue cultures. Research Journal of Agricultural Science, 46(1), 236–245.
Fraga, M. F., Cañal, M. J., & Rodríguez, R. (2002). Phase-change related epigenetic and physiological changes in Pinus radiata D. Don. Planta, 215(4), 672–678. https://doi.org/10.1007/s00425-002-0795-4
Gupta, S., Seal, T., Mao, A. A., & Sarma, S. (2017). High frequency direct shoot organogenesis of leaf explants and a comparative evaluation of phytochemicals, antioxidant potential of wild vs. in vitro plant extracts of Lysimachia laxa. 3 Biotech, 7(4), 274. https://doi.org/10.1007/s13205-017-0907-2
Gurr, S. I., Pherson, M. I., & Bowles, D. J. (1992). Lignin and associated phenolic acids in cell walls. In D. L. Wilkinson (Ed.), Molecular plant pathology: a practical approach (pp. 51–56). Oxford Press.
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425
Isah, T., Umar, S., Mujib, A., Sharma, M. P., Rajasekharan, P. E., Zafar, N., & Frukh, A. (2018). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture, 132(2), 239–265. https://doi.org/10.1007/s11240-017-1332-2
Jones, C. G., & Hartley, S. E. (1999). A protein competition model of phenolic allocation. Oikos, 86(1), 27–44. https://doi.org/10.2307/3546567
Kittibunchakul, S., Hudthagosol, C., Sanporkha, P., Sapwarobol, S., Suttisansanee, U., & Sahasakul, Y. (2022). Effects of maturity and thermal treatment on phenolic profiles and in vitro health-related properties of sacha inchi leaves. Plants, 11(11), 1–14. https://doi.org/10.3390/plants11111515
Koricheva, J., & Barton, K. E. (2012). Temporal changes in plant secondary metabolite production. In G. R. Iason, M. Dicke, & S. E. Hartley (Eds.), The Ecology of Plant Secondary Metabolites: From Genes to Global Processes (pp. 34–55). Cambridge University Press. https://doi.org/10.1017/cbo9780511675751.004
Koricheva, J., Larsson, S., Haukioja, E., Keinänen, M., & Keinanen, M. (1998). Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos, 83(2), 212–226. https://doi.org/10.2307/3546833
Lim, T. Y., Lim, Y. Y., & Yule, C. M. (2017). Distribution and characterisation of phenolic compounds in Macaranga pruinosa and associated soils in a tropical peat swamp forest. Journal of Tropical Forest Science, 29(4), 509–518. https://doi.org/10.26525/jtfs2017.29.4.509518
Liu, B. L., Fan, Z. B., Liu, Z. Q., Qiu, X. H., & Jiang, Y. H. (2018). Comparison of phytochemical and antioxidant activities in micropropagated and seed-derived Salvia miltiorrhiza plants. HortScience, 53(7), 1038–1044. https://doi.org/10.21273/HORTSCI13072-18
Morales, G. A. (2004). Potential of Gmelina arborea for solid wood products. New Forests, 28(2–3), 331–337. https://doi.org/10.1023/B:NEFO.0000040956.68838.97
ONF. (2022). Usos y aportes de la madera en Costa Rica. Estadísticas 2021 & Precios 2022. Alma Creativa.
Pérez-Ochoa, M. L., Vera-Guzmán, A. M., Mondragón-Chaparro, D. M., Sandoval-Torres, S., Carrillo-Rodríguez, J. C., & Chávez-Servia, J. L. (2022). Effects of growth conditions on phenolic composition and antioxidant activity in the medicinal plant Ageratina petiolaris (Asteraceae). Diversity, 14(8), 595. https://doi.org/10.3390/d14080595
R Core Team. (2019). R: A language and environment for statistical computing (Software). R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
Read, P. E., & Bavougian, C. M. (2013). In vitro rejuvenation of woody species. In M. Lambardi, E. A. Ozudogru, & S. M. Jain (Eds.), Protocols for Micropropagation of Selected Economically-Important Horticultural Plants, Methods in Molecular Biology (pp. 305–316). Springer. https://doi.org/10.1007/978-1-62703-074-8
Rencoret, J., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Faulds, C. B., Kim, H., Ralph, J., Martínez, Á. T., & del Río, J. C. (2011). Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiology, 155(2), 667–682. https://doi.org/10.1104/pp.110.167254
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 1–22. https://doi.org/10.3390/molecules24132452
Stafford, H. A. (1960). Differences between lignin-like polymers formed by peroxidation of eugenol and ferulic acid in leaf sections of Phleum. Plant Physiology, 35(1), 108–114. https://doi.org/10.1104/pp.35.1.108
Valledor, L., Hasbún, R., Meijón, M., Rodríguez, J. L., Santamaría, E., Viejo, M., Berdasco, M., Feito, I., Fraga, M. F., Cañal, M. J., & Rodríguez, R. (2007). Involvement of DNA methylation in tree development and micropropagation. Plant Cell, Tissue and Organ Culture, 91(2), 75–86. https://doi.org/10.1007/s11240-007-9262-z
Valledor, L., Meijón, M., Hasbún, R., Jesús Cañal, M., & Rodríguez, R. (2010). Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. Journal of Plant Physiology, 167(5), 351–357. https://doi.org/10.1016/j.jplph.2009.09.018
Verpoorte, R., & Alfermann, A. W. (2000). Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers. https://doi.org/https://doi.org/10.1007/978-94-015-9423-3
Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1(1), 13–25. https://doi.org/10.1023/A:1015871916833
Wam, H. K., Stolter, C., & Nybakken, L. (2017). Compositional changes in foliage phenolics with plant age, a natural experiment in boreal forests. Journal of Chemical Ecology, 43(9), 920–928. https://doi.org/10.1007/s10886-017-0881-5
Warrier, R. R., Priya, S. M., & Kalaiselvi, R. (2021). Gmelina arborea – an indigenous timber species of India with high medicinal value: A review on its pharmacology, pharmacognosy and phytochemistry. Journal of Ethnopharmacology, 267, 113593. https://doi.org/10.1016/j.jep.2020.113593
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Revista de Biología Tropical