Resumen
Los sistemas agroforestales diversos concilian la producción de alimentos, la conservación de la biodiversidad y la provisión de servicios ecosistémicos como el secuestro de carbono atmosférico. Sin embargo, el papel de la riqueza florística sobre la producción de carbono en la biomasa de estos sistemas no está claro. Este estudio evaluó el efecto de la riqueza de especies y la estructura de la vegetación sobre el carbono en la biomasa de diferentes sistemas agroforestales, en la Amazonía Sur de Bolivia. Para eso, fueron estudiados 25 sistemas agroforestales y 4 bosques secundarios, en los departamentos de Santa Cruz y Beni. En cada sistema se instalaron parcelas circulares de 1 963 m2, donde la vegetación (árboles, arbustos y herbáceas) y necromasa (hojarasca, ramas y árboles muertos) fueron muestreados. Se utilizó funciones lineales y logarítmicas para evaluar el efecto de la riqueza y estructura de la vegetación sobre el carbono; y la partición de la varianza para examinar el efecto puro y compartido de las variables riqueza y estructura. Las regresiones mostraron una relación positiva fuerte de la riqueza de especies sobre el carbono de la biomasa (r2 = 0.74; P < 0.001). En la partición de la variancia, el 85.7 % de la variabilidad del carbono fue explicada por la riqueza, estructura y variación de la estructura. De forma aislada, la riqueza explicó el 12.7 %, la estructura el 8.8 % y la variación de la estructura el 4.8 %. Estos resultados confirman que el carbono en la biomasa sobre el suelo aumenta con la riqueza de especies y la variación estructural de la vegetación. Por lo tanto, sistemas agroforestales más biodiversos y estratificados son más eficientes en el uso de los recursos y pueden contribuir con la mitigación del cambio climático.
Citas
Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems and Environment, 99, 15-27. DOI: 10.1016/S0167-8809(03)00138-5
Ali, A., & Mattsson, E. (2017a). Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Science of the Total Environment, 575, 6-11. DOI: 10.1016/j.scitotenv.2016.10.022
Ali, A., & Mattsson, E. (2017b). Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems. Science of the Total Environment, 598, 38-48. DOI: 0.1016/j.scitotenv.2017.04.131
Ali, A., Yan, E. R., Chang, S. X., Cheng, J. Y., & Liu, X. Y. (2017). Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Science of the Total Environment, 574, 654-662. DOI:10.1016/j.scitotenv.2016.09.022
Andrade, H., Segura, M., Somarriba, E., & Villalobos, M. (2008). Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería en Las Américas, 46, 45-50.
Asner, G. P., Martin, R. E., Tupayachi, R., Anderson, C. B., Sinca, F., Carranza-Jiménez, L., & Martínez, P. (2014). Amazonian functional diversity from forest canopy chemical assembly. Proceedings of the National Academy of Sciences, 111(15), 5604-5609. DOI:10.1073/pnas.1401181111
Atangana, A., Khasa, D., Chang, S., & Degrande, A. (2014). Major Agroforestry Systems of the Humid Tropics. En A. Atangana, D. Khasa, S. Chang, & A. Degrande (Eds.), Tropical Agroforestry (pp. 49-93). Dordrecht, Holanda: Springer.
Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical Ecology with R. New York, USA: Springer-Verlag.
Brassard, B. W., Chen, H. Y. H., Cavard, X., Laganière, J., Reich, P. B., Bergeron, Y., … Yuan, Z. (2013). Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology, 101(1), 210-219. DOI:10.1111/1365-2745.12023
Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. Roma, Italia: FAO.
Brown, S. (2002). Measuring, monitoring, and verification of carbon benefits for forest-based projects. Philosophical Transactions of the Royal Society, 360, 1669-1683. DOI:10.1098/rsta.2002.1026
Cardinale, B. J., Duffy, J. E., González, A., Hooper, D. U., Perrings, C., Venail, P., … Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67. DOI:10.1038/nature11148
Cardinale, B. J., Matulich, K. L., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., … Gonzalez, A. (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98(3), 572-592. DOI:10.3732/ajb.1000364
Cardozo, E. G., Muchavisoy, H. M., Silva, H. R., Zelarayán, M. L. C., Leite, M. F. A., Rousseau, G. X., & Gehring, C. (2015). Species richness increases income in agroforestry systems of eastern Amazonia. Agroforestry Systems, 89(5), 901-916. DOI:10.1007/s10457-015-9823-9
Caudill, S. A., De Clerck, F. J. A., & Husband, T. P. (2015). Connecting sustainable agriculture and wildlife conservation: Does shade coffee provide habitat for mammals? Agriculture, Ecosystems and Environment, 199, 85-93. DOI:10.1016/j.agee.2014.08.023
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocksrand balance in tropical forests. Oecología, 145, 87-99.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190. DOI:10.1111/gcb.12629
Chisholm, R. A., Muller-Landau, H. C., Abdul Rahman, K., Bebber, D. P., Bin, Y., Bohlman, S. A., … Zimmerman, J. K. (2013). Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101(5), 1214-1224. DOI:10.1111/1365-2745.12132
Clark, J. S., Dietze, M., Chakraborty, S., Agarwal, P. K., Ibanez, I., LaDeau, S., & Wolosin, M. (2007). Resolving the biodiversity paradox. Ecology Letters, 10(8), 647-659. DOI:10.1111/j.1461-0248.2007.01041.x
Coomes, D. A., Allen, R. B., Scott, N. A., Goulding, C., & Beets, P. (2002). Designing systems to monitor carbon stocks in forests and shrublands. Forest Ecology and Management, 164(1-3), 89-108. DOI:10.1016/S0378-1127(01)00592-8
Coomes, D. A., Kunstler, G., Canham, C. D., & Wright, E. (2009). A greater range of shade-tolerance niches in nutrient-rich forests: an explanation for positive richness-productivity relationships? Journal of Ecology, 97(4), 705-717. DOI:10.1111/j.1365-2745.2009.01507.x
Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., C. Bustamante, M. M., … Wofsy, S. C. (2012). The Amazon basin in transition. Nature, 481(7381), 321-328. DOI:10.1038/nature10717
De Beenhouwer, M., Geeraert, L., Mertens, J., Van Geel, M., Aerts, R., Vanderhaegen, K., & Honnay, O. (2016). Biodiversity and carbon storage co-benefits of coffee agroforestry across a gradient of increasing management intensity in the SW Ethiopian highlands. Agriculture, Ecosystems and Environment, 222, 193-199. DOI:10.1016/j.agee.2016.02.017
Dı́az, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646-655. DOI:10.1016/S0169-5347(01)02283-2
Faria, D., Paciencia, M. L. B., Dixo, M., Laps, R. R., & Baumgarten, J. (2007). Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodiversity and Conservation, 16(8), 2335-2357. DOI:10.1007/s10531-007-9189-z
Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, M., A., Brienen, R. J. W., … Phillips, O. L. (2015). Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 6, 6857. DOI:10.1038/ncomms7857
Flombaum, P., & Sala, O. E. (2008). Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6087-6090. DOI:10.1073/pnas.0704801105
Gamfeldt, L., Snall, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., … Bengtsson, J. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI:10.1038/ncomms2328
Gehring, C., Denich, M., & Vlek, P. L. G. (2005). Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. Journal of Tropical Ecology, 21(5), 519-527. DOI:10.1017/S0266467405002543
Gehring, C., Park, S., & Denich, M. (2008). Close relationship between diameters at 30cm height and at breast height (DBH). Acta Amazonica, 38(1), 71-76. DOI:10.1590/S0044-59672008000100008
Gunderson, L. H. (2000). Ecological Resilience-In Theory and Application. Annual Review of Ecology and Systematics, 31(1), 425-439. DOI:10.1146/annurev.ecolsys.31.1.425
Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., … Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105-108. DOI:10.1038/nature11118
IPCC. (2000). Land use, land-use change, and forestry. Cambridge, UK: Cambridge University Press.
IPCC. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC Guidelines for National Greenhouse Gas Inventories. Cambridge, UK: Cambridge University Press.
IPCC. (2007). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Jacobi, J., Andres, C., Schneider, M., Pillco, M., Calizaya, P., & Rist, S. (2014). Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforestry Systems, 88(6), 1117-1132. DOI:10.1007/s10457-013-9643-8
Justiniano, M. J., Peña-Claros, M., Toledo, M., Jordán, C., Vargas, I., Gutiérrez, M., & Montero, J. C. (2004). Guía Dendrológica de Especies Forestales de Bolivia (Vol. 2). Santa Cruz, Bolivia: BOLFOR.
Kumar, B. M. (2006). Carbon sequestration potential of tropical homegardens. In B. M. Kumar & P. K. R. Nair (Eds.), Tropical Homegardens (pp. 185-204). Dordrecht, Holanda: Springer.
Kumar, B. M., & Nair, P. K. R. (2004). The enigma of tropical homegardens. Agroforestry System, 61(1-3), 135-152. DOI:10.1023/B:AGFO.0000028995.13227.ca
Leite, M. F. A., Luz, R. L., Muchavisoy, K. H. M., Zelarayán, M. L. C., Cardoso, E. G., Moraes, F. H. R., … Gehring, C. (2016). The effect of land use on aboveground biomass and soil quality indicators in spontaneous forests and agroforests of eastern Amazonia. Agroforestry Systems, 90(6), 1009-1023. DOI:10.1007/s10457-015-9880-0
Loreau, M. (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91(1), 3-17. DOI:10.1034/j.1600-0706.2000.910101.x
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., … Wardle, D. A. (2001). Ecology: Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804-808. DOI:10.1126/science.1064088
Matocha, J., Schroth, G., Hills, T., & Hole, D. (2012). Integrating Climate Change Adaptation and Mitigation through Agroforestry and Ecosystem Conservation. In P. Nair & D. Garrity (Eds.), Agroforestry - The Future of Global Land Use (pp. 105-126). Dordrecht, Holanda: Springer.
Mercado, L. M., Patino, S., Domingues, T. F., Fyllas, N. M., Weedon, G. P., Sitch, S., … Lloyd, J. (2011). Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society, 366(1582), 3316-3329. DOI:10.1098/rstb.2011.0045
Müller, R., Müller, D., Schierhorn, F., Gerold, G., & Pacheco, P. (2012). Proximate causes of deforestation in the Bolivian lowlands: An analysis of spatial dynamics. Regional Environmental Change, 12(3), 445-459. DOI:10.1007/s10113-011-0259-0
Nair, P. K. R. (1993). An Introduction to Agroforestry. Londres, Reino Unido: Kluwer Academic Publishers.
Nair, P. K. R. (2014). Agroforestry: Practices and Systems. Encyclopedia of Agriculture and Food Systems, 1, 270-282. DOI:10.1016/B978-0-444-52512-3.00021-8
Nair, P. K. R., Kumar, B. M., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10-23. DOI:10.1002/jpln.200800030
Nelson, B. W., Mesquita, R., Pereira, J. L. G., García Aquino De Souza, S., Teixeira Batista, G., & Bovino Couto, L. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(1-3), 149-167. DOI:10.1016/S0378-1127(98)00475-7
Nogueira, E. M., Fearnside, P. M., & Nelson, B. W. (2008). Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 256(5), 990-996. DOI:10.1016/j.foreco.2008.06.001
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., … Wagner, H. (2015). Vegan: Community Ecology Package. R Package Version 2.3-1. DOI:10.4135/9781412971874.n145
Pearson, T., Walker, S., & Brown, S. (2005). Sourcebook for land use, land-use change and forestry projects. Nueva York, EUA: World Bank.
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. DOI:10.5194/hess-11-1633-2007
Pinho, R. C., Miller, R. P., & Alfaia, S. S. (2012). Agroforestry and the Improvement of Soil Fertility: A View from Amazonia. Applied and Environmental Soil Science, 2012, 1-11. DOI:10.1155/2012/616383
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., … Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211-214. DOI:10.1038/nature16512
Poorter, L., van der Sande, M. T., Thompson, J., Arets, E. J. M. M., Alarcón, A., Álvarez-Sánchez, J., … Peña-Claros, M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24(11), 1314-1328. DOI:10.1111/geb.12364
Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., & Czimczik, C. I. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8(6), 1415-1440. DOI:10.5194/bg-8-1415-2011
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., & Lloyd, J. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9(6), 2203-2246. DOI:10.5194/bg-9-2203-2012
R Core Team. (2016). R Development Core Team. R: A Language and Environment for Statistical Computing. Retrieved from https://www.r-project.org
Rajab, Y. A., Leuschner, C., Barus, H., Tjoa, A., & Hertel, D. (2016). Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS ONE, 11(2). DOI:10.1371/journal.pone.0149949
Reich, P. B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S. E., Flynn, D. F. B., & Eisenhauer, N. (2012). Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336(6081), 589-592. DOI:10.1126/science.1217909
Rousseau, G. X., Rioux, S., & Dostaler, D. (2006). Partitioning the spatial and environmental variation of Sclerotinia stem rot on soybean. Soil Biology and Biochemistry, 38(12), 3343-3358. DOI:10.1016/j.soilbio.2006.04.052
Schroth, G., Bede, L. C., Paiva, A. O., Cassano, C. R., Amorim, A. M., Faria, D., … Lôbo, R. N. (2015). Contribution of agroforests to landscape carbon storage. Mitigation and Adaptation Strategies for Global Change, 20(7), 1175-1190. DOI:10.1007/s11027-013-9530-7
Schroth, G., D’Angelo, S. A., Teixeira, W. G., Haag, D., & Lieberei, R. (2002). Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: Consequences for biomass, litter and soil carbon stocks after 7 years. Forest Ecology and Management, 163(1-3), 131-150. DOI:10.1016/S0378-1127(01)00537-0
Segura, M., Kanninen, M., & Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68(2), 143-150. DOI:10.1007/s10457-006-9005-x
Van Wagner, C. E. (1968). The line intersect method in forest fuel sampling. Forest Science, 14, 20-26.
Vargas, I., Mostacedo, B., & Jordán, C. (2005). Guía Ilustrada de las Principales Especies Forestales de Bolivia. Santa Cruz, Bolivia: IBIF,WWF.
Wang, W., Lei, X., Ma, Z., Kneeshaw, D. D., & Peng, C. (2011). Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57(6), 506-515. DOI:10.1111/oik.01525
Yamada, M., & Gholz, H. L. (2002). An evaluation of agroforestry systems as a rural development option for the Brazilian Amazon. Agroforestry Systems, 55(2), 81-87. DOI:10.1023/A:1020523107243
Young, A. (1997). Agroforestry for soil management (2° ed). Wallingford, Reino Unido: CAB international.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A. A., Ilic, J., Jansen, S., Lewis, S. L. S. L., … Chave, J. (2009). Global wood density database. Dryad, 235(February), 33. DOI:10.5061/dryad.234
Zhang, Y., & Chen, H. Y. H. (2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103(5), 1245-1252. DOI:10.1111/1365-2745.12425
Zhang, Y., Chen, H. Y. H., & Reich, P. B. (2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100(3), 742-749. DOI:10.1111/j.1365-2745.2011.01944.x
Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., … Wang, M. (2016). Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6, 1-12. DOI:10.1038/srep29987
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2018 Revista de Biología Tropical