Resumen
Introducción: Existen diferentes metodologías para la recolecta de macroinvertebrados acuáticos (p.e., la red D y Red Surber), sin embargo, algunas de estas no son efectivas en todos los cuerpos de agua o representa un riesgo para la persona que adquiere la muestra. Los sustratos artificiales pueden emplearse en ríos profundos, contaminados o con presencia de cocodrilos. En Costa Rica hay estudios donde se utilizó los sustratos artificiales, para determinar la riqueza y abundancia en humedales tipo lago y lagunas, no obstante se desconoce la efectividad de un tipo de sustrato sobre otro y en sistemas lóticos. El objetivo del estudio fue demostrar la efectividad de tres tipos de sustratos artificiales. Métodos: las muestras se obtuvieron de manera bimensual entre los años 2013 y 2017, en el Río Parismina, Costa Rica, en cuatro sitios a lo largo del río y se evaluó los sustratos piedra, madera y hojas. Se aplicó una prueba de Kruskal-Wallis para determinar las diferencias entre la abundancia y el tipo de sustrato, como también para determinar la diferencia entre la abundancia y el sitio de muestreo. Además, para determinar si existe una diferencia entre los sustratos por sitio, se aplicó una prueba Permanova de dos vías. Un análisis de correspondencia múltiple para determinar el grado de asociación de la comunidad con respecto al tipo de sustrato. Resultados: Un total de 1159 organismos fueron recolectados, siendo Diptera y Ephemeroptera los órdenes más abundantes. La madera y hojas fueron los sustratos con mayor biodiversidad, como también los sitios con mayor vegetación. Conclusiones: El uso en conjunto de los tres tipos de sustratos artificiales, es efectivo para obtener una mayor riqueza de organismos, ya que se observó afinidad por un sustrato según el género de macroinvertebrado acuático.
Citas
Al-shami, S. A., Salmah, C., Hassan, A., Abdul, S., Azizah, S., & Nor, M. (2011). Ecotoxicology and environmental safety influence of agricultural, industrial, and anthropogenic stresses on the distribution and diversity of macroinvertebrates in Juru River Basin. Ecotoxicology and Environmental Safety, 74(5), 1195-1202.
Arcos, I. (2006). Efecto del ancho del bosque ribereño en la calidad del agua en la microcuenca del río Sesesmiles, Copán, Honduras: uso de comunidades de macroinvertebrados bentónicos como organismos indicadores. Recursos Naturales y Ambiente, 48(1), 29-34.
Boothroyd, I. K. G., & Dickie, B. N. (2010). Macroinvertebrate colonisation of perspex artificial substrates for use in biomonitoring studies. New Zeland Journal of Marine and Freshwater Research, 23, 467-478.
Castillo, L. E., Martínez, E., Ruepert, C., Savage, C., Gilek, M., Pinnock, M., & Solis, E. (2006). Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica. Science of the Total Environment, 367, 418-432.
Benetti, C., Perez-Bilbao, A., & Garrido, J. (2012). Macroinvertebrates as indicators of water quality in running waters: 10 years of research in rivers with different degrees of anthropogenic impacts. In K. Voudouris (Ed.), Ecological Water Quality - Water Treatment and Reuse (pp. 23-44). Rijeka, Croatia: InTech
Cortes, R. M. V, Abelho, M., & Rebelo, S. B. (1996). The macroinvertebrate colonization of leaf Bags: Is there a patterns? Limnetica, 13(2), 71-75.
Courtney, G., & Merrit, R. (2008). Aquatic Diptera, larvae of aquatic diptera. An introduction to the aquatic insects of North America. Michigan, United States: Kendall/Hunt Publishing Company.
Cover M. R., & Resh V. H. (2007) Global diversity of dobsonflies, fishflies, and alderflies (Megaloptera; Insecta) and spongillaflies, nevrorthids, and osmylids (Neuroptera; Insecta) in freshwater. Hydrobiology, 198(1), 409-417
Czerniawska-Kusza, I. (2004). Use of artificial substrates for sampling benthic macroinvertebrates in the assessment of water quality of large lowland rivers. Polish Journal of Environmental Studies, 13, 579-584.
De Pauw, N., Roels, D., & Fontoura, P. (1986). Use of artificial substrates for standardized sampling of macroinvertebrates in the assessment of water quality by the Belgian Biotic Index. Hydrobiologia, 133, 237-258.
De Pauw, N., Lambert, V., Van Kenhove, A., & Bij De Vaate, A. (1994). Performance of two artificial substrate samplers for macroinvertebrates in biological monitoring of large and deep rivers and canals in Belgium and Netherlands. Environmental Monitoring and Assessment, 30, 25-47.
Duan, X., Wang, Z., & Tian, S. (2008). Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2, 122-128.
Flowers, W., & De la Rosa, C. (2010). Ephemeroptera. Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical, 58(Supl. 4), 63-93.
García, L. A., & Jiménez, F. (2003). Efectos del bosque ribereño y de las actividades antrópicas en las características físico-químicas y en poblaciones de macroinvertebrados acuáticos en la subcuenca del río Tascalapa, Honduras. Resumen. Recursos Naturales y Ambiente, 48(48), 35-46.
Griffith, M. B., Kaufmann, P. R., Herlihy, T., & Hill, B. H. (2001). Analysis of macroinvertebrate assemblages in relation to environmental gradients in Rocky Mountain streams. Ecological Applications, 11(2), 489-505.
Hammer, Ø., Harper, D., & Ryan, P.D. (2018). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.
Harvey, C., Casanoves, F., & León, J. A. (2006). Efecto del ancho del bosque ribereño en la calidad del agua en la microcuenca del río Sesesmiles, Copán, Honduras. Recursos Naturales y Ambiente 48, 29-34.
Hedrick, L. B., Welsh, S. A., Anderson, J. T., Lin, L. S., Chen, Y., & Wei, X. (2010). Response of benthic macroinvertebrate communities to highway construction in an Appalachian watershed. Hydrobiologia, 641(1), 115-131.
Hernández, R., Rueda, J., Tapia, G., & Martínez-López, F. (1998). Efectividad de los substratos artificiales para el muestreo de macroinvertebrados en ríos. Ecología, 12, 151-166.
Hilsenhoff, W. (1969). An artificial substrate device for sampling benthic stream invertebrates. Limnology and Oceanography, 14(3), 465-471.
Oksanen, J. (2019). Multivariate Analysis of Ecological Communities in R: vegan tutorial. Retrieved from http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
Kayode, J., & Reubena, U. (2006). The artificial substrate preference of invertebrates in Ogbe Creek, Lagos, Nigeria. Life Science Journal, 4(3), 77-81.
Leite-Rossi, L. A., Nunes, S., & Trivinho-Strixino, G. (2015). Aquatic macroinvertebrate colonization of artificial substrates in low-order streams. Biotemas, 28(3), 69-77.
Matt, R., & Wallace, J. B. (1997). Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments. Hydrobiologia 353, 107-119.
Meier, G., Penrose, D., & Polak, L. (1979). The rate of colonization by macro-invertebrates on artificial substrate samplers. Freshwater Biology, 9(4), 381-392.
Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia, 641(1), 85-95.
Milesi, S. V., Dolédec, S., & Melo, A. S. (2016). Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshwater Science, 35(4), 1321-1329.
Mirto, S., & Danovaro, R. (2004). Meiofaunal colonisation on artificial substrates : a tool for biomonitoring the environmental quality on coastal marine systems. Marine Pollution Bulletin, 48, 919-926.
Molokwu, N. D., Vaz P. G., Bradshawa, T., Blake, A., Henessey, C., & Merten, E. (2014). Effects of substrate on the benthic macroinvertebrate community: An experimental approach. Ecological Engineering, 73, 109-114.
Pashkevich, A., & Pavluk T. (1996). Efficiency of standardized artificial substrate for biological monitoring of river water quality. Environmental Monitoring and Assessment, 40, 143-156.
Phillips, E. C. (2003). Habitat preference of aquatic macroinvertebrates in an East Texas sandy stream. Journal of Freshwater Ecology, 18(1), 1-11.
Phillips, E. C., & Phillips, E. C. (2011). Habitat Preference of Aquatic Macroinvertebrates in an East Texas Sandy Stream. Freshwater Ecology, 18, 1-11.
Polegatto, C.M., & Froehlich, C.G. (2003). Feeding strategies in Atalophlebiinae (Ephemeroptera: Leptophlebiidae), with considerations on scraping and filtering. In E. Gaino (Ed.), Research Update on Ephemeroptera & Plecoptera (pp. 55-61). Italia, Perugia: University of Perugia.
Quesada-Alvarado, F. (2014). Selección y preferencia de hábitat del estado larval de las ninfas de Perlidae (Plecoptera), Corydalidae (Megaloptera) y Leptophlebiidae (Ephemeroptera) como insumo para la determinación de un caudal ambiental en tres represas hidroeléctricas (Tesis de pregrado). Universidad Nacional, Costa Rica.
R Core Team. (2017). R: A language and environment for statistical computing. Version 3.4.2. Vienna, Austria: R Foundation for Statistical Computing.
Ramírez, A. (2010). Odonata. Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical, 58(Supl. 4), 63-93.
Ramírez, A., & Gutiérrez-Fonseca, P. E. (2014). Functional feeding groups of aquatic insect families in Latin America : A critical analysis and review of existing literature. Revista Biología Tropical, 62,155-167.
Roldán, G. (1998). Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Bogotá, Colombia: Pama Editores Ltda.
Saliu, J. K., & Ovuorie, U. R. (2006). The artificial substrate preference of invertebrates in Ogbe Creek, Lagos, Nigeria. Life Science Journal, 4, 77-81.
Silva, F. L., Ruiz, S. S., Bochini, G. L., & Moreira, D. C. (2008). Functional feeding habits of Chironomidae larvae (Insecta, Diptera) in a lotic system from Midwestern region of Sao Paulo State, Brazil. Pan-American Journal of Aquatic Sciences, 3(2), 135-141.
Springer, M. (2010). Trichoptera. Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical, 58(Supl. 4), 63-93.
Trama, F. A., Rizo Patrón V, F. L., & Springer, M. (2009). Macroinvertebrados bentónicos del humedal de Palo Verde, Costa Rica. Revista de Biología Tropical, 57(1), 275-284.
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, K.W. & Cushing, C.E. (1980). The river continnum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37,130-137.
Wagner, R., Barták, M., Borkent, A., Courtney, G., Goddeeris, B., Haenni, J. P., … Zwick, P. (2008). Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae). Hydrobiologia, 595(1), 489-519.
White, D., & Roughley, R. (2008). Aquatic coleopteran. An introduction to the aquatic insects of North America. Michigan, United States: Kendall/Hunt Publishing Company.
Zettel, H., Nieser, N., & Polhemus D. 1999. The Naucoridae (Insecta: Heteroptera) of the Philipinne Islands. Annalen des Naturhistorischen Museums in Wien, 101, 43-105.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2020 Revista de Biología Tropical