Resumen
Introducción: en los sistemas fluviales colombianos ha sido poco estudiada la fragmentación del material alóctono por parte de los insectos acuáticos. Uno de los organismos trituradores más abundantes en las corrientes tropicales de América es el tricóptero del género Phylloicus (Calamoceratidae). Objetivo: el presente estudio tuvo como objetivo evaluar el efecto de los atributos químicos (nitrógeno, fósforo y lignina) y físicos (dureza) de las hojas de tres especies ribereñas (Ficus tonduzii, Zygia longifolia y Clusia multiflora) dominantes en la parte media del río Gaira, sobre la preferencia de hojas y el crecimiento de larvas de Phylloicus sp. Métodos: se realizaron experimentos de multiselección de alimento en campo, en los que se ubicaron cámaras experimentales dentro del río por 21 días. Para la valoración de la calidad foliar se recolectaron hojas del río, las cuales se secaron y se pulverizaron para realizar los análisis químicos. Resultados: no se presentaron diferencias significativas en los porcentajes de lignina y fósforo entre las hojas de las tres especies de árboles, pero si en su dureza y en el contenido de nitrógeno. Las hojas de C. multiflora fueron más suaves (180.1± 53.9 g) que las de F. tonduzii (285.3 ± 88.4 g) y Z. longifolia (232.3 ± 60.8 g), pero sin diferencias entre las dos últimas especies. Las hojas de Z. longifolia también tuvieron más nitrógeno (1.9 ± 0.0%) que las de hojas de las otras especies (1 ± 0.0 %). En cuanto a la preferencia de hojas, las larvas de Phylloicus sp. utilizaron en mayor proporción las hojas de C. multiflora. Aunque las hojas de C. multiflora no tuvieron diferencias significativas en el contenido de lignina y fósforo, presentaron valores menores de dureza, lo que podría hacerlas más palatables para Phylloicus sp. Por otra parte, el crecimiento específico diario de las larvas fue mayor cuando usaron hojas de F. tonduzii. Conclusiones: nuestros resultados parecen indicar que las hojas más preferidas no son necesariamente las de mejor calidad nutricional y sugieren que la dureza de las hojas es la variable más importante en la selección de la hojarasca por parte de las larvas de Phylloicus sp.
Citas
Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. Springer Science & Business Media.
Ardón, M., & Pringle, C. M. (2008). Do secondary compounds inhibit microbial- and insect-mediated leaf breakdown in a tropical rainforest stream, Costa Rica? Oecologia, 155, 311-323. https://doi.org/10.1007/s00442-007-0913-x.
Arsuffi, T. L., & Suberkropp, K. (1986). Growth of two stream caddisflies (Trichoptera). Journal of the North American Benthological Society, 5, 297–305.
Becker, B., Moretti, M. S., & Callisto, M. (2009). Length–dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: Calamoceratidae). Aquatic Insects, 31, 227-234. https://doi.org/10.1080/01650420902787549.
Biasi, C., Cogo, G., Hepp, L. & Santos, S. (2019a). Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits. Iheringia, Série Zoologia, 109, e2019004.
Biasi, C., Cogo, G., Hepp, L. & Santos, S. (2019b). Grass species as a source of allochthonous energy for shredders and fungal decomposers in a subtropical stream. Fundamental and Applied Limnology, 192, 331-341.
Bonilla, R., Roncallo, B., Jimeno, J., & García, T. (2008). Producción y descomposición de la hojarasca en bosques nativos y de Leucaena sp., en Codazzi, Cesar. Ciencia y Tecnología Agropecuaria, 9, 5–11. https://doi.org/10.21930/rcta.vol9_num2_art:113.
Cuadrado, B. (2005). Estructura y composición florística del bosque ripario de la microcuenca del río Gaira, Magdalena, Colombia. Tesis de Doctorado, Universidad del Magdalena, Santa Marta, Colombia.
Cárdenas-Calle, M., & Mair, J. (2014).Caracterización de macroinvertebrados bentónicos de dos ramales estuarinos afectados por la actividad industrial, Estero Salado-Ecuador. Intropica, 9, 118–128.
Cummins, K. W., Merritt, R. W., & Andrade, P. C. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 40, 69-89. https://doi.org/10.1080/01650520400025720.
Cummins, K. W., & Klug, M. J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematic, 10, 147–172. https://doi.org/10.1146/annurev.es.10.110179.001051.
Chará-Serna, A., Chará, J., Zúñiga, M., Pedraza, G., & Giraldo, L. (2010). Clasificación trófica de insectos acuáticos en ocho quebradas protegidas de la ecorregión cafetera colombiana. Universitas Scientiarum, 15, 27–36. https://doi.org/10.11144/javeriana.SC15-1.tcoa
De Moor, F. C., & Ivanov, V. D. (2008). Global diversity of caddisflies (Trichoptera: Insecta) in freshwater. Hydrobiologia, 595, 393-407. https://doi.org/10.1007/s10750-007-9113-2.
Donato-Rondón, J. C., Morales-Duarte, S. J., & Castro-Rebolledo, M. I. (2010). Effects of eutrophication on the interaction between algae and grazers in an Andean stream. Hydrobiologia, 657, 159-166. https://doi.org/10.1007/978-94-007-0608-8_11.
Espinal, L. S., & Montenegro, E. (1963). Formaciones vegetales de Colombia. Memoria explicativa del mapa ecológico. IGAC.
Feio, M. J., & Graça, M. A. S. (2000). Food consumption by the larvae of Sericostoma vittatum (Trichoptera), an endemic species from the Iberian Peninsula. Hydrobiologia, 439, 7-11. https://doi.org/10.1023/A:1004189316952.
Ferreira, W. R., Ligeiro, R., Macedo, D. R., Hughes, R. M., Kaufmann, P. R., Oliveira, L. G., & Callisto, M. (2015). Is the diet of a typical shredder related to the physical habitat of headwater streams in the Brazilian Cerrado? In Annales de Limnologie-International Journal of Limnology, 51, 115-127.
Fontalvo, F. A., & Tamaris-Turizo, C. E. (2018). Calidad del agua de la parte baja del río Córdoba (Magdalena, Colombia), usando el ICA-NSF. Intropica, 13, 101-111. https://doi.org/10.21676/23897864.2510
Guzmán-Soto, C. J., & Tamaris-Turizo, C. E. (2014). Hábitos alimentarios de individuos inmaduros de Ephemeroptera, Plecoptera y Trichoptera en la parte media de un río tropical de montaña. Revista de Biología Tropical, 62: 169-178. https://doi.org/10.15517/rbt.v65i4.26638
Gutiérrez Y. A. (2009). Uso del suelo, vegetación ribereña y calidad del agua de la microcuenca del río Gaira, Santa Marta, Colombia. (Tesis de maestría). Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba, Costa Rica.
Guisande, C., Vaamonde, A., & Barreiro, A. (2014). Programa estadístico StatR - RWizard versión Beta 1.0. Universidad de Vigo. España. Disponible en http://www.ipez.es/RWizard.
Graça, M. A. S., Cressa, C. M. O. G., Gessner, T. M. O., Feio, M. J., Callies, K. A., & Barrios, C. (2001). Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology, 46, 947-957. https://doi.org/10.1046/j.1365-2427.2001.00729.x.
Graça, M. A. S. (1993). Patterns and processes in detritus-based stream systems. Limnologica, 23, 107-114.
Graça, M. A. S., & Cressa, C. (2010). Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology, 95, 27-41. https://doi.org/10.1002/iroh.200911173.
Hammer, Ø., Harper, D.A.T & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4,1.
Irons, J. G., Oswood, M. W., Stout, R., & Pringle, C. M. (1994). Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biology, 32, 401-411. https://doi.org/10.1111/j.1365-2427.1994.tb01135.x.
Landeira-Dabarca, A., Pérez, J., Graça, M. A., & Boyero, L. (2019). Joint effects of temperature and litter quality on detritivore-mediated breakdown in streams. Aquatic sciences, 81, 1. https://doi.org/10.1007/s00027-018-0598-8.
Limon, S. H., Hossain, M., & Spiecker, H. (2018). Nutrients leaching from green leaves of three potential agroforestry tree species. Agroforestry Systems, 92(2), 389-395. https://doi.org/ 10.1007/s10457-016-9996-x.
Mancilla, G., Valdovinos, C., Azocar, M., Jorquera, P., & Figueroa, R. (2009). Efecto del reemplazo de la vegetación nativa de ribera sobre la comunidad de macroinvertebrados bentónicos en arroyos de climas templados, Chile central. Hidrobiológica 19: 193-203.
Martínez, F. S., Franceschini, M. C., & Poi, A. (2013). Preferencia alimentaria de Neochetina eichhorniae (Coleoptera: Curculionidae) en plantas acuáticas de diferente valor nutritivo. Revista Colombiana de Entomología 39: 81-87.
Martins, R., Rezende, R., Gonçalves Jr., J., Lopes, A., Piedade, M., Cavalcante, H., et al. (2017). Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems. PLoS ONE, 12(11), e0188791. https://doi.org/10.1371/journal.pone.0188791.
Merritt, R. W., Cummins, K. W., & Berg, M. B. (2008). An introduction to the aquatic insects of North America. 4th ed. Kendall.
Moretti, S., Loyola, D., Becker, B., & Callisto, M. (2009). Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia, 630, 199-206. https://doi.org/10.1007/s10750-009-9792-y.
Mosquera, Z., Bejarano, D., & Asprilla, S. (2006). Estudio del orden Trichoptera (Insecta) en dos ecosistemas lóticos del municipio de Quibdo, Chocó-Colombia. En F. Villa, C. Rivera, G. Flórez, M. Núñez & X. Carranza (Eds), Memorias VII Seminario Colombiano de Limnología y I Reunión Internacional sobre Ríos y Humedales Neotropicales (85-91). Ibagué, Colombia: Asociación Colombiana de Limnología, León Gráficas.
Navarro, F., Rezende, R., & Gonçalves Jr., J. (2013). Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotropica, 13(4), 28-33. http://dx.doi.org/10.1590/S1676-06032013000400002.
Park, S., & Cho, K. (2003). Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching prosses. Korean Journal of Biological Sciences, 7(4), 289-294. https://doi.org/10.1080/12265071.2003.9647718.
Pedroza-Ramos, A., Caraballo, P., & Aranguren-Riaño, N. (2016). Estructura trófica de los invertebrados acuáticos asociados a Egeria densa (Planch. 1849) en el lago de Tota (Boyacá-Colombia). Intropica, 11, 21-34.
Peluffo, D. (2013). Descomposición y liberación de nutrientes en la hojarasca foliar del bosque ribereño de la cuenca media y alta del río Gaira (Colombia). Tesis de pregrado. Universidad del Magdalena. Santa Marta, Colombia.
ProSierra-Fundación Pro-Sierra Nevada de Santa Marta. (1998). Evaluación Ecológica Rápida de la Sierra Nevada de Santa Marta. Definición de Áreas Críticas para la Conservación de la Sierra Nevada de Santa Marta. Colombia. Ministerio del Medio Ambiente, UAESPPNN The Nature Conservacy -USAID- Embajada de Japón.
Quesada, F. (2000). Especies del Orden Trichoptera (Insecta) en Colombia. Biota Colombiana, 1, 267-288.
Quintero, A. C., Castellanos-Barliza, J., Peláez, J. D. L., & Tamaris-Turizo, C. E. (2015). Caracterización de materia orgánica aportada por hojarasca fina en los bosques de ribera del río Gaira (Sierra Nevada de Santa Marta–Colombia). Revista de Investigación Agraria y Ambiental, 5, 171-184. https://doi.org/10.22490/21456453.946.
Ramírez, A., & Gutiérrez-Fonseca, P. E. (2014). Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical, 62, 155-167. https://doi.org/10.15517/rbt.v62i0.15785.
Rasband W. S. (2012). ImageJ: Image processing and analysis in Java. Astrophysics Source Code Library.
Rezende, R.S., Medeiros, A.O., Gonçalves, J.F. Júnior, Feio, M.J., Pereira Gusmão, E., de Andrade Gomes V.Â., Calor, A. & Almeida, J. (2019) Patterns of litter inputs, hyphomycetes and invertebrates in a Brazilian savanna stream: a process of degradative succession. Journal of Tropical Ecology 35, 297–307. https://doi.org/10.1017/S0266467419000269
Reis, D., Machado, M., Coutinho, N., Rangel, J., Moretti, M., & Morais, P. (2019). Feeding preference of the shredder Phylloicus sp. for plant leaves of Chrysophyllum oliviforme or Miconia chartacea after conditioning in streams from different biomes. Brazilian Journal of Biology, 9(1), 22-28. http://dx.doi.org/10.1590/1519-6984.170644.
Reyes-Torre, L. J., & Ramírez, A. (2018). Effects of experimental pool level reduction on Phylloicus pulchrus (Trichoptera: Calamoceratidae) feeding and conspecific behavior from a tropical rainforest stream. Intropica, 13(1), 13-19. https://doi.org/10.21676/23897864.2352.
Rincón, J., & Martínez, I. (2006). Food quality and feeding preferences of Phylloicus sp. (Trichoptera: Calamoceratidae). Journal of the North American Benthological Society, 25, 209-215. https://doi.org/10.1899/0887-3593(2006)25[209:FQAFPO]2.0.CO;2.
Romero, F. I., Cozano, M. A., Gangas, R. A., & Naulin, P. I. (2014). Zonas ribereñas: protección, restauración y contexto legal en Chile. Bosque (Valdivia), 35, 3-12.
Serna, D. J., Tamaris-Turizo C. E., & Moreno, L. C. G. (2015). Distribución espacial y temporal de larvas de Trichoptera (Insecta) en el río Manzanares, Sierra Nevada de Santa Marta (Colombia). Revista de Biología Tropical, 63, 465-477. https://doi.org/10.15517/rbt.v63i2.15604.
Springer, M. (2006). Clave taxonómica para larvas de las familias del orden Trichoptera (Insecta) de Costa Rica. Revista de Biología Tropical, 54, 273-286. https://doi.org/10.15517/RBT.V54I1.26851.
Tamaris-Turizo, C. E., Rodríguez-Barrios, J., & Ospina-Torres, R. (2013). Deriva de macroinvertebrados acuáticos a lo largo del río Gaira, vertiente noroccidental de la Sierra Nevada de Santa Marta, Colombia. Caldasia, 35, 149-163. https://doi.org/10.15446/caldasia.
Tonello, G., Naziloski, L.A., Tonin, A.M., Restello, R.M., & Hepp, L.U. (2016). Effect of Phylloicus on leaf breakdown in a subtropical stream. Limnetica, 35, 243-252. https://doi.org/10.23818/limn.35.20.
Torres, P. P. J. (2016). Diferencia de daños por herbívoros entre hojas jóvenes de color rojo y verde ¿podría tratarse de mimetismo vegetal? Maskana, 7, 90-95. https://doi.org/10.18537/mskn.07.01.09.
Torres-Zambrano, N. N., & Torres-Zambrano, D. R. (2016). Macroinvertebrados acuáticos de la quebrada Los Alisos, Firavitoba - Boyacá. Intropica, 11, 47-56.
Vannote, R. L., & Minshall, G. W. (1982). Fluvial processes and local lithology controlling abundance, structure, and composition of mussel beds. Proceedings of the National Academy of Sciences, 79, 4103-4107. https://doi.org/10.1073/pnas.79.13.4103.
Vásquez, J., Ramírez, F., Reinoso, G., & Guevara, G. (2010). Distribución espacial y temporal de los tricópteros inmaduros en la cuenca del río Totare (Tolima-Colombia). Caldasia, 32, 129-148. https://doi.org/10.15446/caldasia.
Vásquez, J., Ramírez, F., & Reinoso, G. (2014). Factores ambientales asociados con la preferencia de hábitat de larvas de tricópteros en cuencas con bosque seco tropical (Tolima, Colombia). Revista de Biología Tropical, 62, 21-40. https://doi.org/10.15517/rbt.v62i0.15776.
Wiggins G. B. (2004). Caddisflies: the underwater architects. University of Toronto Press.
Zamora-Muñoz, C., Sáinz- Bariáin, M., & Bonada, N. (2015). Orden Trichoptera. Revista IDE@-SEA 64: 1-21.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2020 Revista de Biología Tropical