Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Diversidad de visitadores florales de plantas ruderales en San Gerardo de Dota, Costa Rica: un paisaje agrícola y natural de zonas altas
PDF (English)
HTML (English)
EPUB (English)

Archivos suplementarios

PDF-MS1 (English)
DOC-MS1 (English)

Palabras clave

Diptera; Hymenoptera; insect communities; pollinators; flower-visiting insects.
Dípteros; Himenópteros; comunidades de insectos; polinizadores; insectos visitantes de flores.

Cómo citar

Rojas-Malavasi, G., Gamboa-Barrantes, N., Vargas-Rodríguez, A., Fuchs, E. J., Hanson, P., Montero, K., Zumbado, M. A., Madrigal-Brenes, R., & Barrantes, G. (2025). Diversidad de visitadores florales de plantas ruderales en San Gerardo de Dota, Costa Rica: un paisaje agrícola y natural de zonas altas. Revista De Biología Tropical, 73(S2), e64684. https://doi.org/10.15517/rev.biol.trop.v73iS2.64684

Resumen

Introducción: Las plantas silvestres dependen principalmente de insectos para su polinización, y a su vez, muchas de estas plantas son esenciales para mantener una comunidad de insectos polinizadores estable, que beneficia a las especies cultivadas. En los ecosistemas de zonas altas de Costa Rica, la diversidad y abundancia de insectos visitadores florales ha sido poco estudiada, a pesar de su importancia y de la proximidad de cultivos en el área.

Objetivo: Determinar la riqueza y composición de especies de insectos visitadores florales de plantas herbáceas nativas y ruderales en un paisaje agrícola en la zona de San Gerardo de Dota, Costa Rica. 

Métodos: Recolectamos insectos visitadores florales sistemáticamente por dos años, a lo largo de transectos en dos sitios, y los identificamos al nivel taxonómico más bajo posible. Estimamos la diversidad alfa para las estaciones seca y lluviosa y entre grupos de plantas. Estos grupos de plantas fueron definidos con base en sus características florales, otros rasgos de vida, y su relación taxonómica. Además, comparamos la composición de insectos visitadores florales entre estos grupos.    

Resultados: Colectamos un total de 1306 insectos, principalmente moscas, de un total de 65 familias en 46 especies de plantas durante 12 visitas de muestreo. La diversidad alfa de insectos, particularmente de moscas (Diptera) fue mayor durante la época lluviosa, debido, posiblemente, a la mayor disponibilidad de recursos (e.g., alimento y sitios para reproducción) para este grupo de insectos. La composición de especies varió entre plantas agrupadas por su morfología floral. Algunas de las comunidades de insectos se traslaparon extensivamente en algunos grupos de plantas, mientras que para otras comunidades el traslape fue mucho menor.

Conclusión: Las diferencias estacionales en los insectos visitadores florales se pueden atribuir a la mayor disponibilidad de recursos durante la época lluviosa. Las diferencias en la composición de insectos visitadores florales entre los distintos grupos de plantas fueron probablemente influenciadas por variaciones temporales en las floraciones, la intensidad de estas floraciones y las características de las flores en cada grupo de plantas. Para conservar la diversidad de insectos visitadores florales y los servicios de polinización que estos proveen, es necesario mantener una diversidad alta de plantas ruderales.

https://doi.org/10.15517/rev.biol.trop..v73iS2.64684
PDF (English)
HTML (English)
EPUB (English)

Citas

Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current Biology, 18(20), 1572–1575. https://doi.org/10.1016/j.cub.2008.08.066

Alberdi, A., & Gilbert, M. T. P. (2019). A guide to the application of Hill numbers to DNA based diversity analyses. Molecular Ecology Resources, 19(4), 804–817. https://doi:10.1111/1755-0998.13014

Arroyo, M. T. K., Armesto, J. J., & Primack, R. B. (1984). Community studies in pollination ecology in the high temperate Andes of Central Chile II: effect of temperature on visitation rates and pollination possibilities. Plant Systems and Evolution, 149, 187–203. https://doi.org/10.1007/BF00983305

Baselga, A. (2023). Betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package (Version 1.6) [Computer software]. CRAN. https://CRAN.R-project.org/package=betapart

Brenes, E. (2017). Analysis of the interactions of floral visitation by insects and their importance for the conservation of the flora of the páramo, in the Cerro de la Muerte Massif [Bachelor's Thesis, Universidad Estatal a Distancia, Costa Rica]. Researchgate. 10.13140/RG.2.2.14869.63207

Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (2009). Manual of Central America Diptera. (Vol. 1). NRC Research Press.

Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., & Zumbado, M. A. (2010). Manual of Central America Diptera. (Vol. 2). NRC Research Press.

Carvalheiro, L. G., Veldtman, R., Shenkute, A. G., Tesfay, G. B., Pirk, C. W. W. Donaldson, J. S., & Nicolson, S. W. (2011). Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters, 14(3), 251–259. https://doi.org/10.1111/j.1461-0248.2010.01579.x

Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4), 265–270. https://www.jstor.org/stable/4615964

Chao, A., Chiu, C. H., & Jost, L. (2014a). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297–324. https://doi.org/ 10.1146/annurev-ecolsys-120213-091540

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014b). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1

Climate-data.org. (2021, December 18). Climate: San Gerardo de Dota, Costa Rica. Climate-data. https://es.climate-data.org/america-del-norte/costa-rica/san-jose/san-gerardo-de-dota-290308/

Cristóbal-Pérez, E. J., Barrantes, G., Cascante-Marín, A., Madrigal-Brenes, R., Hanson, P., & Fuchs, E. J. (2023). Blooming plant species diversity patterns in two adjacent Costa Rican highland ecosystems. PeerJ, 11, e14445. https://doi.org/10.7717/peerj.14445

Cristóbal-Pérez, E. J., Barrantes, G., Cascante-Marín, A., Hanson, P., Picado, B., Gamboa-Barrantes, N., Rojas-Malavasi, G., Zumbado, M. A., Madrigal-Brenes, R., Martén-Rodríguez, S., Quesada, M., & Fuchs, E J. (2024). Elevational and seasonal patterns of plant pollinator networks in two highland tropical ecosystems in Costa Rica. PLoS ONE, 19(1), e0295258. https://doi.org/10.1371/journal.pone.0295258

Da Paz, J. R. L., Gimenes, M., & Pigozzo, C. M. (2013). Three diurnal patterns of anthesis in Ipomoea carnea subsp. fistulosa (Convolvulaceae): Implications for temporal, behavioral and morphological characteristics of pollinators? Flora, 208(2), 138–146. https://doi.org/10.1016/j.flora.2013.02.007

Dellinger, A. S. (2020). Pollination syndromes in the 21st century: where do we stand and where may we go? New Phytologist, 228(4), 1193–1213. https://doi.org/10.1111/nph.16793

Dormann, C. F., Gruber, B., & Fruend, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. R news. 8(2), 8–11. https://journal.r-project.org/articles/RN-2008-010/

Dupont, Y. L., Hansen, D. M., & Olesen, J. M. (2003). Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife Canary Islands. Ultrasound, 26(3), 301–310. https://doi.org/10.1034/j.1600-0587.2003.03443.x

Elberling, H. & Olesen, J. M. (1993). The structure of a high latitude plant–flower visitor system: the dominance of flies. Ultrasound, 22(3), 314–323. https://doi.org/10.1111/j.1600-0587.1999.tb00507.x

Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., & Thomson, J. D. (2004). Pollination Syndromes and Floral Specialization. Annual Review of Ecology, Evolution, and Systematics, 35(1), 375-403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347

Fontaine, C, Dajoz, I., Meriguet, J., & Loreau, M. (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biology, 4(1), e1. https://doi.org/10.1371/journal.pbio.0040001

Fontaine, C., Collin, C. L., & Dajoz, I. (2008). Generalist foraging of pollinators: Diet expansion at high density. Journal of Ecology, 96(5), 1002–1010. https://doi.org/10.1111/j.1365-2745.2008.01405.x

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S., Hipólito, J., ... Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honeybee abundance. Science, 339(6127), 1608–1611. https://doi.org/10.1126/science.1230200

Hartshorn, G. S. (1991). Capítulo 7: Plantas. In D. H. Janzen (Ed.). Historia Natural de Costa Rica (pp. 118–353). Editorial de la Universidad de Costa Rica.

Herrera, C. M. (2019). Flower traits, habitat, and phylogeny as predictors of pollinator service: A plant community perspective. Ecological Monographs, 90(2), e01402. https://doi.org/10.1002/ecm.1402

Hoehn, P., Tscharntke, T., Tylianakis, J. M., & Steffan-Dewenter, I. (2008). Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B, 275(1648), 2283–2291. https://doi.org/10.1098/rspb.2008.0405

Hsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and EXTrapolation for species diversity (Version 3.0.0) [Computer software]. Retrieved from http://chao.stat.nthu.edu.tw/wordpress/software-download/

Inouye, D., Larson, B., Ssymank, A., & Kevan, P. (2015). Flies and flowers III: Ecology of foraging and pollination. Intelligent Transportation Systems Journal, 16(16), 115–133. https://doi.org/10.26786/1920-7603(2015)15

Ishikawa, Y., Kimura, M. T., & Toda, M. J. (2022). Biology and ecology of the Oriental flower-breeding Drosophila elegans and related species. Fly, 16(1), 207–220. https://doi.org/10.1080/19336934.2022.2066953

Janovský, Z. & Štenc, J. (2023). Pollinator community and generalisation of pollinator spectra changes with plant niche width and local dominance. Functional Ecology, 37(11), 1–10. 10.1111/1365-2435.14439

Jauker, F., & Wolters, V. (2008). Hoverflies are efficient pollinators of oilseed rape. Oecologia, 156(4), 819–823. doi:10.1007/s00442-008-1034-x

Junker, R. R., Blüthgen, N., Brehm, T., Binkenstein, J., Paulus, J., Schaefer, H. M., & Stang, M. (2013). Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Functional Ecology, 27(2), 329–341. https://doi.org/10.1111/1365-2435.12005

Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Muller, C. B., & Caflisch, A. (2010). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters, 13(4), 442–452. https://doi.org/10.1111/j.1461-0248.2009.01437.x

Kearns, C. A. (1992). Anthophilous Fly Distribution Across an Elevation Gradient. The American Midland Naturalist, 127(1), 172–182. https://doi.org/10.2307/2426332

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of Royal the Society B, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721

Klein, A. M., Steffan-Dewenter, I., & Tscharntke, T. (2003). Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedures Biological Sciences, 270(1518), 955–61. https://doi.org/10.1098/rspb.2002.2306

Kudo, G., Kohyama, T. I., Chen, K., Hsu, T., & Wang, C. (2023). Seasonal dynamics of floral composition and flower visitors in a subtropical alpine ecosystem in Taiwan. Ecological Research, 39(1), 27–41. https://doi.org/10.22541/au.168294629.96495497/v1

Lefebvre, V., Villemant, C., Fontaine, C., & Daugeron, C. (2018). Altitudinal, temporal and trophic partitioning of flower-visitors in Alpine communities. Scientific Reports, 8(4706), 1–11. https://doi.org/10.1038/s41598-018-23210-y

MacInnis, G., & Forrest, J. R. K. (2019). Pollination by wild bees yields larger strawberries than pollination by honeybees. Journal of Applied Ecology, 56(4), 824–832. https://doi.org/10.1111/1365-2664.13344

Maglianesi, M. A., Hanson, P., Brenes, E., Benadi, G., Schleuning, M., & Dalsgaard, B. (2020). High levels of phenological asynchrony between specialized pollinators and plants with short flowering phases. Ecology, 101(11), e03162. https://doi.org/10.1002/ecy.3162

Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10(8), 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x

Memmott, J., & Waser, N. M. (2002). Integration of alien plants into a native flower–pollinator visitation web. Proceedings of the Royal Society B, 269(1508), 23952399. http://doi.org/10.1098/rspb.2002.2174

Michener, C. D., McGinley, R. J., & Danforth, B. N. (1994). The Bee Genera of North and Central America (Hymenoptera: Apoidea). Smithsonian Institution, Washington, D.C.

Minachilis, K., Kougioumoutzis, K., & Petanidou, T. (2021). Climate change effects on multi-taxa pollinator diversity and distribution along the elevation gradient of Mount Olympus, Greece. Ecological Indicators, 132, 108335. https://doi.org/10.1016/j.ecolind.2021.108335

Montero B. K., Gamboa-Barrantes, N., Rojas-Malavasi, G., Cristóbal-Perez, E. J., Barrantes, G., Cascante-Marín, A., Hanson, P., Zumbado, M. A., Madrigal-Brenes, R., Martén-Rodríguez, S., Quesada, M., Fuchs, E. J. (2025). Pollen metabarcoding reveals a broad diversity of plant sources available to farmland flower visitors near tropical montane forest. Frontiers in Plant Science, 15, 1–13. https://doi.org/10.3389/fpls.2024.1472066

Oksanen, J., Blanchett, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, Minchin, D. P. R., O'Hara, M. R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). Vegan: community ecology package. R package (Version 2.6-6.1) [Computer software]. CRAN. https://CRAN.R-project.org/package=vegan

Olesen, J. M., Bascompte, J., Elberling, H. & Jordano, P. (2008) Temporal dynamics in a pollination network. Ecology, 89(6), 1573–1582. https://doi.org/10.1890/07-0451.1

Ollerton, J., Killick, A., Lamborn, E., Watts, S., & Whiston, M. (2007). Multiple Meanings and Modes: On the Many Ways to Be a Generalist Flower. Taxon, 56(3), 717–728. https://doi.org/10.2307/25065856

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

Orford, K. A., Vaughan, I. P., & Memmott, J. (2015). The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proceedings of Biological Science, 282(1805), 2014–2934. https://doi.org/10.1098/rspb.2014.2934

Pardo, A., Lopes, D. H., Fierro, N., & Borges, P. A. V. (2020). Limited Effect of Management on Apple Pollination: A Case Study from an Oceanic Island. Insects, 11(6), 351. https://doi.org/10.3390/insects11060351

Pérez-Méndez, N., Andersson, G. K. S., Requier, F., Hipólito, J., Aizen, M. A., Morales, C. L., García, N., Gennari, G. P., & Garibaldi, L. A. (2020). The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 57(3), 599–608. https://doi.org/10.1111/1365-2664.13561

Potts, S. G., Vulliamy, B., Dafni, A., Ne'eman, G., & Willmer, P. (2003), Linking Bees and Flowers: How Do Floral Communities Structure Pollinator Communities? Ecology 84(10), 2628–2642. https://doi.org/10.1890/02-0136

Primack, R. B. (1978). Variability in New Zealand montane and alpine pollinator assemblages. New Zealand Journal of Ecology, 1, 66–73. http://www.jstor.org/stable/24052382

R Core Team. (2024). R: A Language and Environment for Statistical Computing (Versión 4.3.3) [Computer software]. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reverté, S., Retana, J., Gómez, J. M. & Bosch, J. (2016). Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Annals of Botany, 118(2), 249–57. https://doi.org/10.1093/aob/mcw103

Robinson, B. W., & Wilson, D. S. (1998). Optimal foraging, specialization, and a solution to Liem’s paradox. The American Naturalist, 151(3), 223–235. https://doi.org/10.1086/286113

Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos, 130, 321–338. https://doi.org/10.1111/oik.07202

Roubik, D. W. (1989). Ecology and natural history of tropical bees. Cambridge University Press, Cambridge, UK.

Santos, A. R. O., Lee, D. K., Ferreira, A. G., do Carmo, M. C., Rondelli, V. M., Barros, K. O., Hsiang, T., Rosa, C. A., & Lachance, M. A. (2020). The yeast community of Conotelus sp. (Coleoptera: Nitidulidae) in Brazilian passionfruit flowers (Passiflora edulis) and description of Metschnikowia amazonensis sp. nov., a large-spored clade yeast. Yeast, 37(3), 253–260. https://doi.org/10.1002/yea.3453

Schmitz, H. J., & Valente, V. L. D. S. (2019). The flower flies and the unknown diversity of Drosophilidae (Diptera): a biodiversity inventory in the Brazilian fauna. Papéis Avulsos de Zoologia, 59, e20195945. https://doi.org/10.11606/1807-0205/2019.59.45

Smith-Ramírez, C., Martinez, P., Nuñez, M., González, C., & Armesto, J. J. (2005). Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloe Island, Chile. Botanical Journal of the Linnean Society, 147(4), 399–416. https://doi.org/10.1111/j.1095-8339.2005.00388.x

Souza, C. S., Maruyama, P. K., Aoki, C., Sigrist, M. R., Raizer, J., Gross, C. L., & de Araujo, A. C. (2018). Temporal variation in plant–pollinator networks from seasonal tropical environments: Higher specialization when resources are scarce. Journal of Ecology, 106(6), 2409–2420. https://doi.org/10.1111/1365-2745.12978

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V.,…Yutani, H. (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A Grammar of Data Manipulation (Version 1.1.3) [Computer software]. CRAN. https://CRAN.R-project.org/package=dplyr

##plugins.facebook.comentarios##

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.