Infraestructura Vial ISSN Impreso: 1409-4045 ISSN electrónico: 2215-3705

OAI: https://revistas.ucr.ac.cr/index.php/vial/oai
Uso de distintos tipos de fibras para mejorar las propiedades mecánicas de la mezcla asfáltica: Una revisión literaria
PDF
HTML

Palabras clave

fibers
mechanical properties
asphalt mixture
asphalt cement performance
fibras
propiedades mecánicas
mezcla asfáltica
desempeño del cemento asfáltico

Cómo citar

Adrianzen Flores, O. J., Azula Vásquez, J. J., Pacherres Sánchez, C. F., Rodriguez Lafitte, E. D., & Muñoz Pérez, S. P. (2022). Uso de distintos tipos de fibras para mejorar las propiedades mecánicas de la mezcla asfáltica: Una revisión literaria. Infraestructura Vial, 24(43), 1–16. https://doi.org/10.15517/iv.v24i43.47931

Resumen

La demanda del uso de pavimentos flexibles va creciendo raudamente debido a su buen desempeño, pero este está siendo afectado de manera considerable debido al aumento del tráfico y las variaciones climáticas, esto trae consigo la presencia de fallas considerables en el pavimento, causando que su desempeño disminuya y, por ende, se acorte su tiempo de vida útil. Este documento tiene como objetivo realizar una revisión sistemática de los distintos tipos de fibras usados en las mezclas asfálticas para la mejora de sus propiedades mecánicas, además de estudiar los porcentajes y longitudes óptimas, las pruebas utilizadas, el desempeño de las mezclas según el tipo de betún, el tipo de mezcla asfáltica y, finalmente, se revisa la rentabilidad que proporciona el uso de fibras en las mezclas asfálticas. Se revisaron 81 artículos publicados en las bases de datos de Scopus y Ebsco, entre los años 2014 al 2021, los cuales tuvieron el mismo objetivo de estudiar las características mecánicas de las mezclas asfálticas con adición de fibras. Se concluyó que las fibras, además de mejorar las propiedades de los pavimentos flexibles, son rentablemente buenas ya que, a pesar de tener un aumento en el costo inicial, demuestran un incremento en el ciclo de vida, siendo así económicamente factibles para proyectos viales que se realicen con el uso mezclas asfálticas, además se recomendó proseguir con estudios encaminados a utilizar este tipo de mezclas asfálticas.

https://doi.org/10.15517/iv.v24i43.47931
PDF
HTML

Citas

Aboutalebi, E. M., y Namavar , J. M. (2020). Optimum parafibre length according to mechanical properties in hot mix asphalt. Road Materials and Pavement Design, 21(3), 683-700. DOI: 10.1080/14680629.2018.1527240

Abu Abdo, A., y Jung, S. (2020). Investigation of reinforcing flexible pavements with waste plastic fibers in Ras Al Khaimah, UAE. Road Materials and Pavement Design, 21(6), 1753-1762. DOI: 10.1080/14680629.2019.1566086

Adnan, Q., Uneb, G., y Sajjad, A. (2016). Comparison of SBS and PP fibre asphalt modifications for rutting potential and life cycle costs of flexible pavements. Road Materials and Pavement Design, 19(2), 484–493. DOI: 10.1080/14680629.2016.1259124

Al-Bdairi, A. S., Al-Taweel, H. M., y Noor, H. M. (2020). Improving the properties of asphalt mixture using fiber materials. Materials Science and Engineering Conference Series, 870, 012092. DOI: 10.1088/1757-899X/870/1/012092

Alfalah, A., Offenbacker, D., Ali, A., DeCarlo, C., Lein, W., Mehta, Y., y Elshaer, M. H. (2020). Assessment of the Impact of Fiber Types on the Performance of Fiber-Reinforced Hot Mix Asphalt. Transportation Research Record, 2674(4), 337-347. DOI: 10.1177/0361198120912425

Aljubory, A., Abbas, A. S., y Bdan, A. (2020). Effect of Palm Fibers on Asphalt Pavement Properties. Materials Science and Engineering Conference Series, 881, 012176. DOI:10.1088/1757-899X/881/1/012176

Alnadish, A. M., y Aman, M. Y. (2019). Evaluation of aramid fibre-reinforced asphalt mixtures. Lecture Notes in Civil Engineering, 9, 1377-1388. DOI: 10.1007/978-981-10-8016-6_99

Al-Sabaeei, A., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Zoorob, S. E., y Usman, A. (2020). Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen. International Journal of Pavement Engineering. DOI: 10.1080/10298436.2020.1737060

Arabani, M., Shabani, A., y Hamedi, G. H. (2019). Experimental Investigation of Effect of Ceramic Fibers on Mechanical Properties of Asphalt Mixtures. Journal of Materials in Civil Engineering, 31(9). DOI: 10.1061/(ASCE)MT.1943-5533.0002821

Atherton, W., Ruddock, F. M., y Shanbara , H. K. (2017). Improving the Mechanical Properties of Cold Mix Asphalt Mixtures Reinforced by Natural and Synthetic Fibers. International Conference on Highway Pavements and Airfield Technology 2017, 102-111. DOI: 10.1061/9780784480946.010

Bdour, A., Khalayleh, Y., y Al-Omari, A. A. (2015). Assessing mechanical properties of hot mix asphalt with wire wool fibers. Advances in Civil Engineering, 2015, 795903. DOI:10.1155/2015/795903

Bueno, M., y Poulikakos, L. (2020). Chemo-Mechanical Evaluation of Asphalt Mixtures Reinforced With Synthetic Fibers. Frontiers in Built Environment, 6, 41. DOI: 10.3389/fbuil.2020.00041

Çetin, S. (٢٠١٤). Evaluation on the usability of structure steel fiber-reinforced bituminous hot mixtures. Construction and Building Materials, 64, 414-420. DOI: 10.1016/j.conbuildmat.2014.04.093

Çetin, A., Evirgen, B., Karslioglu, A., y Tuncan, A. (2020). The effect of basalt fiber on the performance of stone mastic asphalt. Periodica Polytechnica Civil Engineering, 65(1), 299-308. DOI: 10.3311/PPci.14190

Chen, Z., Yi, J., Chen, Z., y Feng, D. (2019). Properties of asphalt binder modified by corn stalk fiber. Construction and Building Materials, 212, 225-235. DOI: 10.1016/j.conbuildmat.2019.03.329

Colares do Vale, A., Toé Casagrande, M., y Barbosa Soares, J. (2014). Behavior of Natural Fiber in Stone Matrix Asphalt Mixtures Using Two Design Methods. Journal of Materials in Civil Engineering, 26, 457-465. DOI: 10.1061/(ASCE)MT.1943-5533.0000815

Dehghan, Z., y Modarres, A. (2017). Evaluating the fatigue properties of hot mix asphalt reinforced by recycled PET fibers using 4-point bending test. Construction and Building Materials, 139, 384-393. DOI: 10.1016/j.conbuildmat.2017.02.082

Desseaux, S., dos Santos, S., Geiger, T., Tingaut, P., Zimmermann, T., Partl, M., y Poulikakos, L. (2018). Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 140, 139-144. DOI: 10.1016 / j.compositesb.2017.12.010

Do, T. T., Nguyen, D. L., Tran, V. T., y Tai Nguyen, H. (2020). Effects of Forta-fi Fiber on the Resistance to Fatigue of Conventional Asphalt Mixtures. 5th International Conference on Green Technology and Sustainable Development, 312-316. DOI: 10.1109/GTSD50082.2020.9303123

Eisa, M., Basiouny, M., y Daloob, M. (2021). Effect of adding glass fiber on the properties of asphalt mix. International Journal of Pavement Research and Technology., 14(4), 403-409. DOI: 10.1007/s42947-020-0072-6

Enieb, M., Diab, A., y Yang, X. (2019). Short- and long-term properties of glass fiber reinforced asphalt mixtures. International Journal of Pavement Engineering, 22(1), 64-67. DOI: 10.1080/10298436.2019.1577421

Ferreira da Costa, L., Grangeiro de Barros, A., Lucena Lopes, A. D., y Lucena Lopes, L. D. (2020). Asphalt mixture reinforced with banana fibres. Road Materials and Pavement Design, 22(8), 1881-1893. DOI: 10.1080/14680629.2020.1713866

Ferrotti, G., Pasquini, E., y Canestrari, F. (2014). Experimental characterization of high-performance fiber-reinforced cold mix asphalt mixtures. Construction and Building Materials, 57, 117-125. DOI: 10.1016/j.conbuildmat.2014.01.089

García, A., Norambuena Contreras, J., y Partl, M. (2014). A parametric study on the influence of steel wool fibers in dense asphalt concrete. Materials and Structures, 47(9), 1559-1571. DOI: 10.1617/s11527-013-0135-0

Geckil, T., y Ahmedzade, P. (2020). Effects of carbon fibre on performance properties of asphalt mixtures. The Baltic Journal, 15(2), 49-65. DOI: 10.7250/bjrbe.2020-15.472

Guan, B., Liu, J., Wu, J., Liu, J., Tian, H., Huang, T., Chengcheng, L., y Ren, T. (2019). Investigation of the performance of the ecofriendly fiber-reinforced asphalt mixture as a sustainable pavement material. Advances in Materials Science and Engineering, 2019, 6361032. DOI: 10.1155/2019/6361032

Guo, Q., Li, L., Cheng, Y., Jiao, Y., y Xu, C. (2015). Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture. Materials and Design, 66, 51-59. DOI: 10.1016/j.matdes.2014.10.033

Guo, F., Li, R., Lu , S., Bi, Y., y He, H. (2020). Evaluation of the Effect of Fiber Type, Length, and Content on Asphalt Properties and Asphalt Mixture Performance. Materials, 13(7), 1556-1579. DOI: 10.3390/ma13071556

Hao, M., y Hao, P. (2014). Natural mineral fiber improved asphalt mixture performance. Applied Mechanics and Materials, 638-640, 1166-1170. DOI: 10.4028/www.scientific.net/AMM.638-640.1166

Herráiz, T., Herráiz, J., Domingo, L., y Domingo, F. (2016). Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures. Construction and Building Materials, 102, 601-612. DOI: 10.1016/j.conbuildmat.2015.10.193

Jasni, N., Masri, K., Ramadhansyah, P., Arshad, A., Shaffie, E., Ahmad, J., y Norhidayah, A. (2020). Mechanical Performance of Stone Mastic Asphalt Incorporating Steel Fiber. Materials Science and Engineering Conference Series, 712(1), 012026. DOI: 10.1088/1757-899X/712/1/012026

Javani, M., Kashi, E., y Mohamadi, S. (2019). Effect of polypropylene fibers and recycled glass on AC mixtures mechanical properties. International Journal of Pavement Research and Technology, 12(5), 464-471. DOI: 10.1007/s42947-019-0056-6

Kamaruddin, I., Napiah, M., y Nahi, M. H. (2016). The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture. MATEC Web of Conferences, 78, 01040. DOI: 10.1051/matecconf/20167801040

Kar, D., Giri, J. P., y Panda, M. (2019). Performance Evaluation of Bituminous Paving Mixes Containing Sisal Fiber as an Additive. Transportation Infrastructure Geotechnology, 6(3), 189-206. DOI: 10.1007/s40515-019-00079-6

Kar, S. S., Nagabhushana , M. N., y Jain, P. K. (2019). Performance of hot bituminous mixes admixed with blended synthetic fibers. International Journal of Pavement Research and Technology, 12, 370-379. DOI: 10.1007/s42947-019-0044-x

Kara De Maeijer, P., Soenen, H., Van den Bergh, W., Blom, J., Jacobs, G., y Stoop, J. (2019). Peat fibers and finely ground peat powder for application in asphalt. Infrastructures, 4(1), 3. DOI: 10.3390/infrastructures4010003

Kassem, H., Saleh, N., Zalghout, A., y Chehab, G. (2018). Advanced characterization of asphalt concrete mixtures reinforced with synthetic fibers. Journal of Materials in Civil Engineering, 30(11), 04018307. DOI: 10.1061/(ASCE)MT.1943-5533.0002521

Kim, M.-J., Kim, S., Yoo, D.-Y., y Shin, H.-O. (2018). Enhancing mechanical properties of asphalt concrete using synthetic fibers. Construction and Building Materials, 178, 233-24. DOI: 10.1016/j.conbuildmat.2018.05.070

Klinsky Gutiérrez, L. M., Kaloush, K. E., Faria, V. C., y Dos Santos Bardini, V. S. (2018). Performance characteristics of fiber modified hot mix asphalt. Construction and Building Materials, 176, 747-752. DOI: 10.1016/j.conbuildmat.2018.04.221

Koçkal, N. U., y Köfteci, S. (٢٠١٦). Aggressive Environmental Effect on Polypropylene Fibre Reinforced Hot Mix Asphalt. Procedia Engineering, 161, 963-969. DOI: 10.1016 / j.proeng.2016.08.834

Li, Z., Zhang, X., Fa , C., Zhang, Y., Xiong, J., y Chen , H. (2020). Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Construction and Building Materials, 248, 118648. DOI: 10.1016/j.conbuildmat.2020.118648

Liu, J., Li, Z., Chen, H., Guan, B., y Liu, K. (2020). Investigation of Cotton Straw Fibers for Asphalt Mixtures. Journal of Materials in Civil Engineering, 32(5), 04020105. DOI: 10.1061/(ASCE)MT.1943-5533.0003181

Liu, Y., Zhang, Z., Tan, L., Xu, Y., Wang, C., Liu, P., Huayang, Y., y Oeser, M. (2020). Laboratory evaluation of emulsified asphalt reinforced with glass fiber treated with different methods. Journal of Cleaner Production, 274, 123116. DOI: 10.1016/j.jclepro.2020.123116

Lou, K., Xiao, P., Kang, A., Wu, Z., y Lu, P. (2020). Suitability of fiber lengths for hot mix asphalt with different nominal maximum aggregate size: A pilot experimental investigation. Materials, 13(17), 3685. DOI: 10.3390/MA13173685

Maharaj, R., Ali, R., Ramlochan, D., y Mohamed, N. (2019). Utilization of coir fibre as an asphalt modifier. Progress in Rubber, Plastics y Recycling Technology, 35(2), 59-74. DOI: 10.1177/1477760618795996

Mansourian, A., Razmi, A., y Razavi, M. (2016). Evaluation of fracture resistance of warm mix asphalt containing jute fibers. Construction and Building Materials, 117, 37-46. DOI: 10.1016/j.conbuildmat.2016.04.128

Martinez Arguelles, G., Giustozzi, F., Crispino, M., y Flintsch, G. (2015). Laboratory investigation on mechanical performance of cold foamed bitumen mixes: Bitumen source, foaming additive, fiber-reinforcement and cement effect. Construction and Building Materials, 93, 241-248. DOI: 10.1016/j.conbuildmat.2015.05.116

Mawat, H. Q., y Ismael, M. Q. (2020). Assessment of moisture susceptibility for asphalt mixtures modified by carbon fibers. Civil Engineering Journal, 6(2), 304-317. DOI: 10.28991/cej-2020-03091472

Meng, F., Gao, D., Chen, F., y Huang, C. (2020). Fatigue Performance Test and Life Calculation of Fiber-Reinforced Asphalt Concrete. Annales de Chimie - Science des Matériaux, 44(2), 133-139. DOI: 10.18280/acsm.440209

Miao, Y., Wang, T., y Wang, L. (2019). Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder. Polymers, 11(3), 542-553. DOI: 10.3390/polym11030542

Mohammed, M., Parry, T., Thom, N. H., y Grenfell, J. (2020). Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Construction and Building Materials, 240, 117932. DOI: 10.1016/j.conbuildmat.2019.117932

Morea, F., y Zerbino, R. L. (2018). Improvement of asphalt mixture performance with glass macro-fibers. Construction and Building Materials, 164, 113-120. DOI: 10.1016/j.conbuildmat.2017.12.198

Morova, N., Serin, S., Terzi, S., Saltan, M., Ozdemir Kucukcapraz, D., Sargin Karahancer, S., y Eriskin, E. (2016). Utility of polyparaphenylene terephtalamide fiber in hot mix asphalt as a fiber. Construction and Building Materials, 107, 87-94. DOI: 10.1016 / j.conbuildmat.2015.12.193

Mrema, A. H., Noh, S. H., Kwon, O., y Lee, J. (2020). Performance of glass wool fibers in asphalt concrete mixtures. Materials, 13(21), 4699. DOI: 10.3390/ma13214699

Musa, S. S., Shanbara, H. K., y Dulaimi, A. (2020). The Effect of polypropylene fibres on the tensile performance of asphalt mixtures for road pavements. Materials Science and Engineering Conference Series, 888(1). DOI: 10.1088/1757-899X/888/1/012082

Naseri Yalghouzaghaj, M., Sarkar, A., Hamedi, G. H., y Hayati, P. (2020). Effect of ceramic fibers on the thermal cracking of hot-mix asphalt. Journal of Materials in Civil Engineering, 32(11), 04020325. DOI: 10.1061/(ASCE)MT.1943-5533.0003396

Parimita, P. (2020). Influence of Natural Fibers as Additive on Characteristics of Stone Mastic Asphalt. IOP Conference Series: Materials Science and Engineering, 970(1), 012021. DOI: 10.1088/1757-899X/970/1/012021

Park, K., Shoukat, T., Yoo, P., y Lee, S.-h. (2020). Strengthening of hybrid glass fiber reinforced recycled hot-mix asphalt mixtures. Construction and Building Materials, 258, 118947. DOI:10.1016/j.conbuildmat.2020.118947

Perca Callomamani, L. A., Hashemian, L., y Sha, K. (2020). Laboratory Investigation of the Performance Evaluation of Fiber-Modified Asphalt Mixes in Cold Regions. Transportation Research Record, 2674(7), 323-335. DOI: 10.1177/0361198120922213

Pirmohammad, S., y Hojjati, M. M. (2020). Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Construction and Building Materials, 251, 118927. DOI: 10.1016/j.conbuildmat.2020.118927

Pirmohammad, S., Majd Shokorlou, Y., y Amani, B. (2020). Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Construction and Building Materials, 239, 117850. DOI: 10.1016/j.conbuildmat.2019.117850

Preciado, J., Martínez Arguelles , G., Dugarte, M., Bonicelli, A., Cantero, J., Vega, D., y Barros, Y. (2017). Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries. Materials Science and Engineering Conference Series, 245(2), 022013. DOI: 10.1088 / 1757-899X / 245/2/022013

Rahman, M. T., Mohajerani, A., y Giustozzi, F. (2020). Possible Recycling of Cigarette Butts as Fiber Modifier in Bitumen for Asphalt Concrete. Materials, 13(3), 734. DOI: 10.3390 / ma13030734

Ramalingam, S., Murugasan, R., y Nagabhushana, M. (2017). Laboratory performance evaluation of environmentally sustainable sisal fibre reinforced bituminous mixes. Construction and Building Materials, 148, 22-29. DOI: 10.1016/j.conbuildmat.2017.05.006

Romeo, E., Freddi, F., y Montepara, A. (2014). Mechanical behaviour of surface layer fibreglass-reinforced flexible pavements. International Journal of Pavement Engineering, 15(2), 95-109. DOI: 10.1080/10298436.2013.828838

Sabaeei, A., Napiah, M., Sutanto, M., y Alaloul, W. (2019). Effects of Waste Denim Fibre (WDF) on the physical and rheological properties of bitumen. Materials Science and Engineering, Conference Series, 527(1), 012047. DOI: 10.1088/1757-899X/527/1/012047

Saleem, A. A., y Ismael, M. Q. (2020). Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers. Civil Engineering Journal (Iran), 6(9), 1726-1738. DOI: 10.28991/cej-2020-03091578

Shanbara, H. K., Ruddock , F., y Atherton, W. (2018)b. A viscoplastic model for permanent deformation prediction of reinforced cold mix asphalt. Construction and Building Materials, 186, 287-302. DOI:10.1016/j.conbuildmat.2018.07.127

Shanbara, H., Ruddock, F., y Atherton, W. (2018)c. A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Construction and Building Materials, 172, 166-175. DOI:10.1016/j.conbuildmat.2018.03.252

Shanbara, H., Ruddock, F., y Atherton, W. (2018)a. Predicting the rutting behaviour of natural fibre-reinforced cold mix asphalt using the finite element method. Construction and Building Materials, 167, 907-917. DOI:10.1016/j.conbuildmat.2018.02.072

Sheng, Y., Zhang, B., Yan, Y., Li, H., Chen, Z., y Chen, H. (2019). Laboratory Investigation on the Use of Bamboo Fiber in Asphalt Mixtures for Enhanced Performance. Arabian Journal for Science and Engineering, 44(5), 4629-4638. DOI: 10.1007/s13369-018-3490-x

Shubbar, A., Shanbara, H. K., Ruddock, F., y Atherton, W. (2020). Characterizing the Rutting Behaviour of Reinforced Cold Mix Asphalt with Natural and Synthetic Fibres Using Finite Element Analysis. Lecture Notes in Civil Engineering, 38, 221-227. DOI: 10.1007/978-981-13-7615-3_20

Souliman, M., Tripathi, A., y Isied, M. (2019). Mechanistic analysis and economic benefits of fiber-reinforced asphalt mixtures. Journal of Materials in Civil Engineering, 31(8), 04019142. DOI: 10.1061/(ASCE)MT.1943-5533.0002755

Takaikaew, T., Tepsriha, P., Horpibulsuk, S., Hoy, M., Kaloush, K. E., y Arulrajah, A. (2018). Performance of fiber-reinforced asphalt concretes with various asphalt binders in Thailand. Journal of Materials in Civil Engineering, 30(8), 04018193. DOI: 10.1061/(ASCE)MT.1943-5533.0002433

Usman, N., Masirin, M. I., Ahmad, K. A., y Ali, A. S. (2019). Application of recycled polyethylene terephthalate fiber in asphaltic mix for fatigue life improvement. Lecture Notes in Civil Engineering, 9, 1401-1413. DOI: 10.1007/978-981-10-8016-6_101

Wang, H., Yang, Z., Zhan, S., Ding, L., y Jin, K. (2018). Fatigue Performance and Model of Polyacrylonitrile Fiber Reinforced Asphalt Mixture. Applied Sciences (Switzerland), 8(10), 1818. DOI: 10.3390/app8101818

Wang, X., Zhou, H., Hu, X., Shen, S., y Dong, B. (2021). Investigation of the Performance of Ceramic Fiber Modified Asphalt Mixture. Advances in Civil Engineering, 2021, 8833468. DOI: 10.1155/2021/8833468

Winiewski, D., Słowik, M., Kempa, J., Lewandowska, A., y Malinowska, J. (2020). Assessment of Impact of Aramid Fibre Addition on the Mechanical Properties of Selected Asphalt Mixtures. Materials, 13(15), 3302. DOI: 10.3390/ma13153302

Zhang, H., Hao, P., Pang, Y., y Mwanza , A. (2016). Design Method and Cost-Benefit Analysis of Hybrid Fiber Used in Asphalt Concrete. Advances in Materials Science and Engineering, 2016, 1-9. DOI: 10.1155/2016/8014704

Ziari, H., y Moniri, A. (2019). Laboratory evaluation of the effect of synthetic Polyolefin-glass fibers on performance properties of hot mix asphalt. Construction y Building Materials, 213, 459-468. DOI: 10.1016/j.conbuildmat.2019.04.084

Ziari, H., Saghafi, Y., Moniri, A., y Bahri, P. (2020). The effect of polyolefin-aramid fibers on performance of hot mix asphalt. Petroleum Science and Technology, 38(3), 170-176. DOI: 10.1080/10916466.2019.1697286

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.