Abstract
The demand for the use of flexible pavements is growing rapidly due to its good performance, but this is being affected considerably due to increased traffic and climatic variations, this brings with it the presence of considerable failures in the pavement, causing its performance to decrease and, therefore, its useful lifetime is shortened. This document aims to carry out a systematic review of the different types of fibers used in asphalt mixtures to improve their mechanical properties, in addition to studying the optimal percentages and lengths, the tests used, the performance of the mixtures according to the type of bitumen, the type of asphalt mix, and finally the profitability provided by the use of fibers in asphalt mixes is reviewed. Eighty-one articles published between 2014 and 2021 in the Scopus and Ebsco databases were reviewed. The reviewed papers had the same objective of studying the mechanical characteristics of asphalt mixtures using fibers. It was concluded that the fibers improve the properties of flexible pavements and, in addition, are profitably good despite having an increase in the initial cost, they demonstrate an increase in the life cycle, thus being economically feasible for road projects that are carried out with the use flexible pavements. It is also recommended to continue with studies aimed at using this type of asphalt mixture.
References
Aboutalebi, E. M., y Namavar , J. M. (2020). Optimum parafibre length according to mechanical properties in hot mix asphalt. Road Materials and Pavement Design, 21(3), 683-700. DOI: 10.1080/14680629.2018.1527240
Abu Abdo, A., y Jung, S. (2020). Investigation of reinforcing flexible pavements with waste plastic fibers in Ras Al Khaimah, UAE. Road Materials and Pavement Design, 21(6), 1753-1762. DOI: 10.1080/14680629.2019.1566086
Adnan, Q., Uneb, G., y Sajjad, A. (2016). Comparison of SBS and PP fibre asphalt modifications for rutting potential and life cycle costs of flexible pavements. Road Materials and Pavement Design, 19(2), 484–493. DOI: 10.1080/14680629.2016.1259124
Al-Bdairi, A. S., Al-Taweel, H. M., y Noor, H. M. (2020). Improving the properties of asphalt mixture using fiber materials. Materials Science and Engineering Conference Series, 870, 012092. DOI: 10.1088/1757-899X/870/1/012092
Alfalah, A., Offenbacker, D., Ali, A., DeCarlo, C., Lein, W., Mehta, Y., y Elshaer, M. H. (2020). Assessment of the Impact of Fiber Types on the Performance of Fiber-Reinforced Hot Mix Asphalt. Transportation Research Record, 2674(4), 337-347. DOI: 10.1177/0361198120912425
Aljubory, A., Abbas, A. S., y Bdan, A. (2020). Effect of Palm Fibers on Asphalt Pavement Properties. Materials Science and Engineering Conference Series, 881, 012176. DOI:10.1088/1757-899X/881/1/012176
Alnadish, A. M., y Aman, M. Y. (2019). Evaluation of aramid fibre-reinforced asphalt mixtures. Lecture Notes in Civil Engineering, 9, 1377-1388. DOI: 10.1007/978-981-10-8016-6_99
Al-Sabaeei, A., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Zoorob, S. E., y Usman, A. (2020). Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen. International Journal of Pavement Engineering. DOI: 10.1080/10298436.2020.1737060
Arabani, M., Shabani, A., y Hamedi, G. H. (2019). Experimental Investigation of Effect of Ceramic Fibers on Mechanical Properties of Asphalt Mixtures. Journal of Materials in Civil Engineering, 31(9). DOI: 10.1061/(ASCE)MT.1943-5533.0002821
Atherton, W., Ruddock, F. M., y Shanbara , H. K. (2017). Improving the Mechanical Properties of Cold Mix Asphalt Mixtures Reinforced by Natural and Synthetic Fibers. International Conference on Highway Pavements and Airfield Technology 2017, 102-111. DOI: 10.1061/9780784480946.010
Bdour, A., Khalayleh, Y., y Al-Omari, A. A. (2015). Assessing mechanical properties of hot mix asphalt with wire wool fibers. Advances in Civil Engineering, 2015, 795903. DOI:10.1155/2015/795903
Bueno, M., y Poulikakos, L. (2020). Chemo-Mechanical Evaluation of Asphalt Mixtures Reinforced With Synthetic Fibers. Frontiers in Built Environment, 6, 41. DOI: 10.3389/fbuil.2020.00041
Çetin, S. (٢٠١٤). Evaluation on the usability of structure steel fiber-reinforced bituminous hot mixtures. Construction and Building Materials, 64, 414-420. DOI: 10.1016/j.conbuildmat.2014.04.093
Çetin, A., Evirgen, B., Karslioglu, A., y Tuncan, A. (2020). The effect of basalt fiber on the performance of stone mastic asphalt. Periodica Polytechnica Civil Engineering, 65(1), 299-308. DOI: 10.3311/PPci.14190
Chen, Z., Yi, J., Chen, Z., y Feng, D. (2019). Properties of asphalt binder modified by corn stalk fiber. Construction and Building Materials, 212, 225-235. DOI: 10.1016/j.conbuildmat.2019.03.329
Colares do Vale, A., Toé Casagrande, M., y Barbosa Soares, J. (2014). Behavior of Natural Fiber in Stone Matrix Asphalt Mixtures Using Two Design Methods. Journal of Materials in Civil Engineering, 26, 457-465. DOI: 10.1061/(ASCE)MT.1943-5533.0000815
Dehghan, Z., y Modarres, A. (2017). Evaluating the fatigue properties of hot mix asphalt reinforced by recycled PET fibers using 4-point bending test. Construction and Building Materials, 139, 384-393. DOI: 10.1016/j.conbuildmat.2017.02.082
Desseaux, S., dos Santos, S., Geiger, T., Tingaut, P., Zimmermann, T., Partl, M., y Poulikakos, L. (2018). Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 140, 139-144. DOI: 10.1016 / j.compositesb.2017.12.010
Do, T. T., Nguyen, D. L., Tran, V. T., y Tai Nguyen, H. (2020). Effects of Forta-fi Fiber on the Resistance to Fatigue of Conventional Asphalt Mixtures. 5th International Conference on Green Technology and Sustainable Development, 312-316. DOI: 10.1109/GTSD50082.2020.9303123
Eisa, M., Basiouny, M., y Daloob, M. (2021). Effect of adding glass fiber on the properties of asphalt mix. International Journal of Pavement Research and Technology., 14(4), 403-409. DOI: 10.1007/s42947-020-0072-6
Enieb, M., Diab, A., y Yang, X. (2019). Short- and long-term properties of glass fiber reinforced asphalt mixtures. International Journal of Pavement Engineering, 22(1), 64-67. DOI: 10.1080/10298436.2019.1577421
Ferreira da Costa, L., Grangeiro de Barros, A., Lucena Lopes, A. D., y Lucena Lopes, L. D. (2020). Asphalt mixture reinforced with banana fibres. Road Materials and Pavement Design, 22(8), 1881-1893. DOI: 10.1080/14680629.2020.1713866
Ferrotti, G., Pasquini, E., y Canestrari, F. (2014). Experimental characterization of high-performance fiber-reinforced cold mix asphalt mixtures. Construction and Building Materials, 57, 117-125. DOI: 10.1016/j.conbuildmat.2014.01.089
García, A., Norambuena Contreras, J., y Partl, M. (2014). A parametric study on the influence of steel wool fibers in dense asphalt concrete. Materials and Structures, 47(9), 1559-1571. DOI: 10.1617/s11527-013-0135-0
Geckil, T., y Ahmedzade, P. (2020). Effects of carbon fibre on performance properties of asphalt mixtures. The Baltic Journal, 15(2), 49-65. DOI: 10.7250/bjrbe.2020-15.472
Guan, B., Liu, J., Wu, J., Liu, J., Tian, H., Huang, T., Chengcheng, L., y Ren, T. (2019). Investigation of the performance of the ecofriendly fiber-reinforced asphalt mixture as a sustainable pavement material. Advances in Materials Science and Engineering, 2019, 6361032. DOI: 10.1155/2019/6361032
Guo, Q., Li, L., Cheng, Y., Jiao, Y., y Xu, C. (2015). Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture. Materials and Design, 66, 51-59. DOI: 10.1016/j.matdes.2014.10.033
Guo, F., Li, R., Lu , S., Bi, Y., y He, H. (2020). Evaluation of the Effect of Fiber Type, Length, and Content on Asphalt Properties and Asphalt Mixture Performance. Materials, 13(7), 1556-1579. DOI: 10.3390/ma13071556
Hao, M., y Hao, P. (2014). Natural mineral fiber improved asphalt mixture performance. Applied Mechanics and Materials, 638-640, 1166-1170. DOI: 10.4028/www.scientific.net/AMM.638-640.1166
Herráiz, T., Herráiz, J., Domingo, L., y Domingo, F. (2016). Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures. Construction and Building Materials, 102, 601-612. DOI: 10.1016/j.conbuildmat.2015.10.193
Jasni, N., Masri, K., Ramadhansyah, P., Arshad, A., Shaffie, E., Ahmad, J., y Norhidayah, A. (2020). Mechanical Performance of Stone Mastic Asphalt Incorporating Steel Fiber. Materials Science and Engineering Conference Series, 712(1), 012026. DOI: 10.1088/1757-899X/712/1/012026
Javani, M., Kashi, E., y Mohamadi, S. (2019). Effect of polypropylene fibers and recycled glass on AC mixtures mechanical properties. International Journal of Pavement Research and Technology, 12(5), 464-471. DOI: 10.1007/s42947-019-0056-6
Kamaruddin, I., Napiah, M., y Nahi, M. H. (2016). The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture. MATEC Web of Conferences, 78, 01040. DOI: 10.1051/matecconf/20167801040
Kar, D., Giri, J. P., y Panda, M. (2019). Performance Evaluation of Bituminous Paving Mixes Containing Sisal Fiber as an Additive. Transportation Infrastructure Geotechnology, 6(3), 189-206. DOI: 10.1007/s40515-019-00079-6
Kar, S. S., Nagabhushana , M. N., y Jain, P. K. (2019). Performance of hot bituminous mixes admixed with blended synthetic fibers. International Journal of Pavement Research and Technology, 12, 370-379. DOI: 10.1007/s42947-019-0044-x
Kara De Maeijer, P., Soenen, H., Van den Bergh, W., Blom, J., Jacobs, G., y Stoop, J. (2019). Peat fibers and finely ground peat powder for application in asphalt. Infrastructures, 4(1), 3. DOI: 10.3390/infrastructures4010003
Kassem, H., Saleh, N., Zalghout, A., y Chehab, G. (2018). Advanced characterization of asphalt concrete mixtures reinforced with synthetic fibers. Journal of Materials in Civil Engineering, 30(11), 04018307. DOI: 10.1061/(ASCE)MT.1943-5533.0002521
Kim, M.-J., Kim, S., Yoo, D.-Y., y Shin, H.-O. (2018). Enhancing mechanical properties of asphalt concrete using synthetic fibers. Construction and Building Materials, 178, 233-24. DOI: 10.1016/j.conbuildmat.2018.05.070
Klinsky Gutiérrez, L. M., Kaloush, K. E., Faria, V. C., y Dos Santos Bardini, V. S. (2018). Performance characteristics of fiber modified hot mix asphalt. Construction and Building Materials, 176, 747-752. DOI: 10.1016/j.conbuildmat.2018.04.221
Koçkal, N. U., y Köfteci, S. (٢٠١٦). Aggressive Environmental Effect on Polypropylene Fibre Reinforced Hot Mix Asphalt. Procedia Engineering, 161, 963-969. DOI: 10.1016 / j.proeng.2016.08.834
Li, Z., Zhang, X., Fa , C., Zhang, Y., Xiong, J., y Chen , H. (2020). Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Construction and Building Materials, 248, 118648. DOI: 10.1016/j.conbuildmat.2020.118648
Liu, J., Li, Z., Chen, H., Guan, B., y Liu, K. (2020). Investigation of Cotton Straw Fibers for Asphalt Mixtures. Journal of Materials in Civil Engineering, 32(5), 04020105. DOI: 10.1061/(ASCE)MT.1943-5533.0003181
Liu, Y., Zhang, Z., Tan, L., Xu, Y., Wang, C., Liu, P., Huayang, Y., y Oeser, M. (2020). Laboratory evaluation of emulsified asphalt reinforced with glass fiber treated with different methods. Journal of Cleaner Production, 274, 123116. DOI: 10.1016/j.jclepro.2020.123116
Lou, K., Xiao, P., Kang, A., Wu, Z., y Lu, P. (2020). Suitability of fiber lengths for hot mix asphalt with different nominal maximum aggregate size: A pilot experimental investigation. Materials, 13(17), 3685. DOI: 10.3390/MA13173685
Maharaj, R., Ali, R., Ramlochan, D., y Mohamed, N. (2019). Utilization of coir fibre as an asphalt modifier. Progress in Rubber, Plastics y Recycling Technology, 35(2), 59-74. DOI: 10.1177/1477760618795996
Mansourian, A., Razmi, A., y Razavi, M. (2016). Evaluation of fracture resistance of warm mix asphalt containing jute fibers. Construction and Building Materials, 117, 37-46. DOI: 10.1016/j.conbuildmat.2016.04.128
Martinez Arguelles, G., Giustozzi, F., Crispino, M., y Flintsch, G. (2015). Laboratory investigation on mechanical performance of cold foamed bitumen mixes: Bitumen source, foaming additive, fiber-reinforcement and cement effect. Construction and Building Materials, 93, 241-248. DOI: 10.1016/j.conbuildmat.2015.05.116
Mawat, H. Q., y Ismael, M. Q. (2020). Assessment of moisture susceptibility for asphalt mixtures modified by carbon fibers. Civil Engineering Journal, 6(2), 304-317. DOI: 10.28991/cej-2020-03091472
Meng, F., Gao, D., Chen, F., y Huang, C. (2020). Fatigue Performance Test and Life Calculation of Fiber-Reinforced Asphalt Concrete. Annales de Chimie - Science des Matériaux, 44(2), 133-139. DOI: 10.18280/acsm.440209
Miao, Y., Wang, T., y Wang, L. (2019). Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder. Polymers, 11(3), 542-553. DOI: 10.3390/polym11030542
Mohammed, M., Parry, T., Thom, N. H., y Grenfell, J. (2020). Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Construction and Building Materials, 240, 117932. DOI: 10.1016/j.conbuildmat.2019.117932
Morea, F., y Zerbino, R. L. (2018). Improvement of asphalt mixture performance with glass macro-fibers. Construction and Building Materials, 164, 113-120. DOI: 10.1016/j.conbuildmat.2017.12.198
Morova, N., Serin, S., Terzi, S., Saltan, M., Ozdemir Kucukcapraz, D., Sargin Karahancer, S., y Eriskin, E. (2016). Utility of polyparaphenylene terephtalamide fiber in hot mix asphalt as a fiber. Construction and Building Materials, 107, 87-94. DOI: 10.1016 / j.conbuildmat.2015.12.193
Mrema, A. H., Noh, S. H., Kwon, O., y Lee, J. (2020). Performance of glass wool fibers in asphalt concrete mixtures. Materials, 13(21), 4699. DOI: 10.3390/ma13214699
Musa, S. S., Shanbara, H. K., y Dulaimi, A. (2020). The Effect of polypropylene fibres on the tensile performance of asphalt mixtures for road pavements. Materials Science and Engineering Conference Series, 888(1). DOI: 10.1088/1757-899X/888/1/012082
Naseri Yalghouzaghaj, M., Sarkar, A., Hamedi, G. H., y Hayati, P. (2020). Effect of ceramic fibers on the thermal cracking of hot-mix asphalt. Journal of Materials in Civil Engineering, 32(11), 04020325. DOI: 10.1061/(ASCE)MT.1943-5533.0003396
Parimita, P. (2020). Influence of Natural Fibers as Additive on Characteristics of Stone Mastic Asphalt. IOP Conference Series: Materials Science and Engineering, 970(1), 012021. DOI: 10.1088/1757-899X/970/1/012021
Park, K., Shoukat, T., Yoo, P., y Lee, S.-h. (2020). Strengthening of hybrid glass fiber reinforced recycled hot-mix asphalt mixtures. Construction and Building Materials, 258, 118947. DOI:10.1016/j.conbuildmat.2020.118947
Perca Callomamani, L. A., Hashemian, L., y Sha, K. (2020). Laboratory Investigation of the Performance Evaluation of Fiber-Modified Asphalt Mixes in Cold Regions. Transportation Research Record, 2674(7), 323-335. DOI: 10.1177/0361198120922213
Pirmohammad, S., y Hojjati, M. M. (2020). Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Construction and Building Materials, 251, 118927. DOI: 10.1016/j.conbuildmat.2020.118927
Pirmohammad, S., Majd Shokorlou, Y., y Amani, B. (2020). Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Construction and Building Materials, 239, 117850. DOI: 10.1016/j.conbuildmat.2019.117850
Preciado, J., Martínez Arguelles , G., Dugarte, M., Bonicelli, A., Cantero, J., Vega, D., y Barros, Y. (2017). Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries. Materials Science and Engineering Conference Series, 245(2), 022013. DOI: 10.1088 / 1757-899X / 245/2/022013
Rahman, M. T., Mohajerani, A., y Giustozzi, F. (2020). Possible Recycling of Cigarette Butts as Fiber Modifier in Bitumen for Asphalt Concrete. Materials, 13(3), 734. DOI: 10.3390 / ma13030734
Ramalingam, S., Murugasan, R., y Nagabhushana, M. (2017). Laboratory performance evaluation of environmentally sustainable sisal fibre reinforced bituminous mixes. Construction and Building Materials, 148, 22-29. DOI: 10.1016/j.conbuildmat.2017.05.006
Romeo, E., Freddi, F., y Montepara, A. (2014). Mechanical behaviour of surface layer fibreglass-reinforced flexible pavements. International Journal of Pavement Engineering, 15(2), 95-109. DOI: 10.1080/10298436.2013.828838
Sabaeei, A., Napiah, M., Sutanto, M., y Alaloul, W. (2019). Effects of Waste Denim Fibre (WDF) on the physical and rheological properties of bitumen. Materials Science and Engineering, Conference Series, 527(1), 012047. DOI: 10.1088/1757-899X/527/1/012047
Saleem, A. A., y Ismael, M. Q. (2020). Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers. Civil Engineering Journal (Iran), 6(9), 1726-1738. DOI: 10.28991/cej-2020-03091578
Shanbara, H. K., Ruddock , F., y Atherton, W. (2018)b. A viscoplastic model for permanent deformation prediction of reinforced cold mix asphalt. Construction and Building Materials, 186, 287-302. DOI:10.1016/j.conbuildmat.2018.07.127
Shanbara, H., Ruddock, F., y Atherton, W. (2018)c. A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Construction and Building Materials, 172, 166-175. DOI:10.1016/j.conbuildmat.2018.03.252
Shanbara, H., Ruddock, F., y Atherton, W. (2018)a. Predicting the rutting behaviour of natural fibre-reinforced cold mix asphalt using the finite element method. Construction and Building Materials, 167, 907-917. DOI:10.1016/j.conbuildmat.2018.02.072
Sheng, Y., Zhang, B., Yan, Y., Li, H., Chen, Z., y Chen, H. (2019). Laboratory Investigation on the Use of Bamboo Fiber in Asphalt Mixtures for Enhanced Performance. Arabian Journal for Science and Engineering, 44(5), 4629-4638. DOI: 10.1007/s13369-018-3490-x
Shubbar, A., Shanbara, H. K., Ruddock, F., y Atherton, W. (2020). Characterizing the Rutting Behaviour of Reinforced Cold Mix Asphalt with Natural and Synthetic Fibres Using Finite Element Analysis. Lecture Notes in Civil Engineering, 38, 221-227. DOI: 10.1007/978-981-13-7615-3_20
Souliman, M., Tripathi, A., y Isied, M. (2019). Mechanistic analysis and economic benefits of fiber-reinforced asphalt mixtures. Journal of Materials in Civil Engineering, 31(8), 04019142. DOI: 10.1061/(ASCE)MT.1943-5533.0002755
Takaikaew, T., Tepsriha, P., Horpibulsuk, S., Hoy, M., Kaloush, K. E., y Arulrajah, A. (2018). Performance of fiber-reinforced asphalt concretes with various asphalt binders in Thailand. Journal of Materials in Civil Engineering, 30(8), 04018193. DOI: 10.1061/(ASCE)MT.1943-5533.0002433
Usman, N., Masirin, M. I., Ahmad, K. A., y Ali, A. S. (2019). Application of recycled polyethylene terephthalate fiber in asphaltic mix for fatigue life improvement. Lecture Notes in Civil Engineering, 9, 1401-1413. DOI: 10.1007/978-981-10-8016-6_101
Wang, H., Yang, Z., Zhan, S., Ding, L., y Jin, K. (2018). Fatigue Performance and Model of Polyacrylonitrile Fiber Reinforced Asphalt Mixture. Applied Sciences (Switzerland), 8(10), 1818. DOI: 10.3390/app8101818
Wang, X., Zhou, H., Hu, X., Shen, S., y Dong, B. (2021). Investigation of the Performance of Ceramic Fiber Modified Asphalt Mixture. Advances in Civil Engineering, 2021, 8833468. DOI: 10.1155/2021/8833468
Winiewski, D., Słowik, M., Kempa, J., Lewandowska, A., y Malinowska, J. (2020). Assessment of Impact of Aramid Fibre Addition on the Mechanical Properties of Selected Asphalt Mixtures. Materials, 13(15), 3302. DOI: 10.3390/ma13153302
Zhang, H., Hao, P., Pang, Y., y Mwanza , A. (2016). Design Method and Cost-Benefit Analysis of Hybrid Fiber Used in Asphalt Concrete. Advances in Materials Science and Engineering, 2016, 1-9. DOI: 10.1155/2016/8014704
Ziari, H., y Moniri, A. (2019). Laboratory evaluation of the effect of synthetic Polyolefin-glass fibers on performance properties of hot mix asphalt. Construction y Building Materials, 213, 459-468. DOI: 10.1016/j.conbuildmat.2019.04.084
Ziari, H., Saghafi, Y., Moniri, A., y Bahri, P. (2020). The effect of polyolefin-aramid fibers on performance of hot mix asphalt. Petroleum Science and Technology, 38(3), 170-176. DOI: 10.1080/10916466.2019.1697286