Uniformity trials simulation to determine the statistical power in yield rice trials

Authors

DOI:

https://doi.org/10.15517/am.v32i1.40870

Keywords:

test power, number of repetitions, geostatistical simulations, random fields

Abstract

Introduction. Prospective analysis of the statistical power of a hypothesis test should be one of the most important stages in any experiment, however, it is frequently omitted. In Costa Rica, within the literature consulted, no research related to this topic was found for yield experiments in rice cultivation. Objective. To simulate uniformity trials to determine the power of a completely randomized design for rice yield experiments in Bagaces, Costa Rica. Materials and methods. The parameters of the spatial correlation process of a blank trial established in Bagaces, Guanacaste were estimated. Then, the estimates were used to perform 10 000 simulations of larger random fields, this allowed to superimpose different number of repetitions and estimate the power achieved to detect a difference of 10 % with respect to the mean in a completely randomized experiment at a significance level of 5 %. Results. The power of 80 % was obtained with five repetitions. Conclusion. In rice yield trials, to detect a mean difference of 10 % at a significance level of 5 %, this investigation required five or more repetitions.

Downloads

Download data is not yet available.

References

Ahn, C., Heo, M., & Zhang, S. (2015). Sample size calculations for clustered and longitudinal outcomes in clinical research. CRC Press, Taylor & Francis.

Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2013). Applied spatial data analysis with R. Springer. https://doi.org/10.1007/978-1-4614-7618-4

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates Inc.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037//0033-2909.112.1.155

Cressie, N. (1993). Statistics for spatial data (2nd ed.). Wiley-Interscience. https://doi.org/10.1002/9781119115151

Diggle, P. J., & Ribeiro, P. J. (2010). Model-based geostatistics. Springer.

Fagroud, M., & Meirvenne, M. V. (2002). Accounting for Soil Spatial Autocorrelation in the Design of Experimental Trials. Soil Science Society of America Journal, 66(4), 1134–1142. https://doi.org/10.2136/sssaj2002.1134

Gbur, E. E., Stroup, W. W., McCarter, K. S., Durham, S., Young, L. J., Christman, M., West, M., & Kramer, M. (2012). Analysis of generalized linear mixed models in the agricultural and natural resources sciences (Chapter 7). American Society of Agronomy, Soil Science Society of America, and Crop Science Society of America.

Gent, D. H., Esker, P. D., & Kriss, A. B. (2018). Statistical Power in Plant Pathology Research. Phytopathology, 108(1), 15–22. https://doi.org/10.1094/phyto-03-17-0098-le

González, M. I. (2008). Potencia de prueba: La gran ausente en muchos trabajos científicos. Agronomía Mesoamericana, 19(2), 309–313. https://doi.org/10.15517/am. v19i2.5015

Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria. (2008). Manual de recomendaciones del cultivo de arroz. Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria.

Kuehl, R. (2001). Diseño de experimentos: Principios estadísticos de diseño y análisis de investigación (2nd ed.). International Thomson.

Lapeña, B. P., Wijnberg, K. M., Stein, A., & Hulscher, S. J. (2011). Spatial factors affecting statistical power in testing marine fauna displacement. Ecological Applications, 21(7), 2756–2769. https://doi.org/10.1890/10-1887.1

Montgomery, D. C. 2019. Design and analysis of experiments (8th ed.). John Wiley & Sons.

Murphy, K. R., Myors, B., & Wolach, A. H. (2014). Statistical power analysis: A simple and general model for traditional and modern hypothesis tests (4th ed.). Routledge.

Petitgas, P., Woillez, M., Rivoirard, J., Renard, D., and Bez, N. (2017). Handbook of geostatistics in R for fisheries and marine ecology. ICES Cooperative Research Report.

Pinheiro, J., Bates D., DebRoy S., & Sarkar, D. (2016). nlme: Linear and nonlinear mixed effects models. R package. http://CRAN.R-project.org/package=nlme.

Quinn, G., & Keough, M. (2002). Experimental Design and Data Analysis for Biologists (1st ed. Chapter 7). Cambridge University Press.

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Ribeiro, P.J., & Diggle, P.J. (2001). GeoR: A Package for Geostatistical Analysis. R-News, 1, 14–18.

Richter, C., & Kroschewski, B. (2012). Geostatistical Models in Agricultural Field Experiments: Investigations Based on Uniformity Trials. Agronomy Journal, 104(1), 91–105. https://doi.org/10.2134/agronj2011.0100

Robledo, W. (2015). Diseño y análisis de experimentos a un criterio de clasificación. In: M. Balzarini, J. Di Rienzo, M. Tablada, L. González, C. Bruno, M. Córdoba, W. Robledo, & F. Casanoves (Eds.), Estadística y biometría: Ilustraciones del uso de Infostat en problemas de agronomía (2nd ed., pp. 257–285). Editorial Brujas.

Rodríguez, N., Sánchez, H., & Pacheco, P. (1993). Determinación de tamaño y forma óptimos de parcela para ensayos de rendimiento con café. Revista Colombiana de Estadística, 14(27), 50–64.

Rosselló, J. M., & Fernández, M. (1986). Guía técnica para ensayos de variedades en campo. Organización de las Naciones Unidas para la Agricultura y la Alimentación.

Stroup, W.W. (1999). Mixed model procedures to assess power, precision, and sample size in the design of experiments. In American Statistical Association (Ed.) Proceedings Biopharmaceutical Section American Statistical Association (pp. 15–24). American Statistical Association; Biopharmaceutical Section.

Stroup, W. W. (2002). Power analysis based on spatial effects mixed models: A tool for comparing design and analysis strategies in the presence of spatial variability. Journal of Agricultural, Biological, and Environmental Statistics, 7(4), 491–511. https://doi.org/10.1198/108571102780.

Vargas, J. C., & J. R. Navarro. (2019). Tamaño y forma de unidad experimental para ensayos de rendimiento de arroz (Oryza sativa), en Guanacaste, Costa Rica. Cuadernos de Investigación, 11(3), 355–360. https://doi.org/10.22458/urj.v11i3.2653

West, B. T., Welch, K. B., & Gałecki, A. T. (2015). Linear mixed models: A practical guide using statistical software (2 ed.). Chapman & Hall/CRC.

Published

2021-01-01

How to Cite

Vargas-Rojas, J. C. (2021). Uniformity trials simulation to determine the statistical power in yield rice trials. Agronomía Mesoamericana, 32(1), 196–208. https://doi.org/10.15517/am.v32i1.40870