Uniformity trials simulation to determine the statistical power in yield rice trials
DOI:
https://doi.org/10.15517/am.v32i1.40870Keywords:
test power, number of repetitions, geostatistical simulations, random fieldsAbstract
Introduction. Prospective analysis of the statistical power of a hypothesis test should be one of the most important stages in any experiment, however, it is frequently omitted. In Costa Rica, within the literature consulted, no research related to this topic was found for yield experiments in rice cultivation. Objective. To simulate uniformity trials to determine the power of a completely randomized design for rice yield experiments in Bagaces, Costa Rica. Materials and methods. The parameters of the spatial correlation process of a blank trial established in Bagaces, Guanacaste were estimated. Then, the estimates were used to perform 10 000 simulations of larger random fields, this allowed to superimpose different number of repetitions and estimate the power achieved to detect a difference of 10 % with respect to the mean in a completely randomized experiment at a significance level of 5 %. Results. The power of 80 % was obtained with five repetitions. Conclusion. In rice yield trials, to detect a mean difference of 10 % at a significance level of 5 %, this investigation required five or more repetitions.
Downloads
References
Ahn, C., Heo, M., & Zhang, S. (2015). Sample size calculations for clustered and longitudinal outcomes in clinical research. CRC Press, Taylor & Francis.
Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2013). Applied spatial data analysis with R. Springer. https://doi.org/10.1007/978-1-4614-7618-4
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates Inc.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037//0033-2909.112.1.155
Cressie, N. (1993). Statistics for spatial data (2nd ed.). Wiley-Interscience. https://doi.org/10.1002/9781119115151
Diggle, P. J., & Ribeiro, P. J. (2010). Model-based geostatistics. Springer.
Fagroud, M., & Meirvenne, M. V. (2002). Accounting for Soil Spatial Autocorrelation in the Design of Experimental Trials. Soil Science Society of America Journal, 66(4), 1134–1142. https://doi.org/10.2136/sssaj2002.1134
Gbur, E. E., Stroup, W. W., McCarter, K. S., Durham, S., Young, L. J., Christman, M., West, M., & Kramer, M. (2012). Analysis of generalized linear mixed models in the agricultural and natural resources sciences (Chapter 7). American Society of Agronomy, Soil Science Society of America, and Crop Science Society of America.
Gent, D. H., Esker, P. D., & Kriss, A. B. (2018). Statistical Power in Plant Pathology Research. Phytopathology, 108(1), 15–22. https://doi.org/10.1094/phyto-03-17-0098-le
González, M. I. (2008). Potencia de prueba: La gran ausente en muchos trabajos científicos. Agronomía Mesoamericana, 19(2), 309–313. https://doi.org/10.15517/am. v19i2.5015
Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria. (2008). Manual de recomendaciones del cultivo de arroz. Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria.
Kuehl, R. (2001). Diseño de experimentos: Principios estadísticos de diseño y análisis de investigación (2nd ed.). International Thomson.
Lapeña, B. P., Wijnberg, K. M., Stein, A., & Hulscher, S. J. (2011). Spatial factors affecting statistical power in testing marine fauna displacement. Ecological Applications, 21(7), 2756–2769. https://doi.org/10.1890/10-1887.1
Montgomery, D. C. 2019. Design and analysis of experiments (8th ed.). John Wiley & Sons.
Murphy, K. R., Myors, B., & Wolach, A. H. (2014). Statistical power analysis: A simple and general model for traditional and modern hypothesis tests (4th ed.). Routledge.
Petitgas, P., Woillez, M., Rivoirard, J., Renard, D., and Bez, N. (2017). Handbook of geostatistics in R for fisheries and marine ecology. ICES Cooperative Research Report.
Pinheiro, J., Bates D., DebRoy S., & Sarkar, D. (2016). nlme: Linear and nonlinear mixed effects models. R package. http://CRAN.R-project.org/package=nlme.
Quinn, G., & Keough, M. (2002). Experimental Design and Data Analysis for Biologists (1st ed. Chapter 7). Cambridge University Press.
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ribeiro, P.J., & Diggle, P.J. (2001). GeoR: A Package for Geostatistical Analysis. R-News, 1, 14–18.
Richter, C., & Kroschewski, B. (2012). Geostatistical Models in Agricultural Field Experiments: Investigations Based on Uniformity Trials. Agronomy Journal, 104(1), 91–105. https://doi.org/10.2134/agronj2011.0100
Robledo, W. (2015). Diseño y análisis de experimentos a un criterio de clasificación. In: M. Balzarini, J. Di Rienzo, M. Tablada, L. González, C. Bruno, M. Córdoba, W. Robledo, & F. Casanoves (Eds.), Estadística y biometría: Ilustraciones del uso de Infostat en problemas de agronomía (2nd ed., pp. 257–285). Editorial Brujas.
Rodríguez, N., Sánchez, H., & Pacheco, P. (1993). Determinación de tamaño y forma óptimos de parcela para ensayos de rendimiento con café. Revista Colombiana de Estadística, 14(27), 50–64.
Rosselló, J. M., & Fernández, M. (1986). Guía técnica para ensayos de variedades en campo. Organización de las Naciones Unidas para la Agricultura y la Alimentación.
Stroup, W.W. (1999). Mixed model procedures to assess power, precision, and sample size in the design of experiments. In American Statistical Association (Ed.) Proceedings Biopharmaceutical Section American Statistical Association (pp. 15–24). American Statistical Association; Biopharmaceutical Section.
Stroup, W. W. (2002). Power analysis based on spatial effects mixed models: A tool for comparing design and analysis strategies in the presence of spatial variability. Journal of Agricultural, Biological, and Environmental Statistics, 7(4), 491–511. https://doi.org/10.1198/108571102780.
Vargas, J. C., & J. R. Navarro. (2019). Tamaño y forma de unidad experimental para ensayos de rendimiento de arroz (Oryza sativa), en Guanacaste, Costa Rica. Cuadernos de Investigación, 11(3), 355–360. https://doi.org/10.22458/urj.v11i3.2653
West, B. T., Welch, K. B., & Gałecki, A. T. (2015). Linear mixed models: A practical guide using statistical software (2 ed.). Chapman & Hall/CRC.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).