Early selection in clonal trials of melina (Gmelina arborea Robx.) in Costa Rica
DOI:
https://doi.org/10.15517/am.v32i1.42069Keywords:
heritability, genetic improvement, genetic parameters, genetic correlationsAbstract
Introduction. The early selection age allows to accelerate genetic improvement programs and optimize forest production, in this case with melina (Gmelina arborea), which is the second most important forest species for commercial reforestation in Costa Rica. Objective. To determine the optimal selection age of melina in Costa Rica, by evaluating four genetic characters. Materials and methods. The study was carried out in Siquirres and Pérez Zeledón, the Caribbean region and the southern zone of Costa Rica, respectively. A randomized complete block design was used with four replicates (Sites 1 and 3) and six replicates (Site 2) per treatment. The initial spacing was 4 m x 3 m for the El Porvenir trial and 4 m x 4 m for the Siquirres and La Ceniza trials. Genetic parameters were calculated at different ages, for the variables diameter at breast height (DBH), commercial height, commercial volume, and shaft quality, with the SELEGEN software, which is based on the REML / BLUP method, in addition, genetic correlations were made between the evaluated variables. Results. The DBH and the commercial volume were the characters with the greatest genetic control, they presented the highest mean values of individual heritability and clonal mean, between 2.8 and 4 years of age. The highest genetic correlations (> 80%), between the DAP and commercial volume variables, occurred from 2.8 years of age, which increased in later ages until reaching values greater than 90 %. Conclusion. The range between 2.8 and 4 years could be determined as a possible age of genetic selection for melina.
Downloads
References
Alfaro, M. A. L., Aymerich, U. N., Blanco, L. G., Bolaños, A. L., Campos, M. A., & Matarrita, O. R. (2013). Guía de diseño bioclimático según clasificación de zonas de vida de Holdridge [Tesis de Licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/2110
Barrantes, A. R., & Ugalde, S. A. (2019). Usos y aportes de la madera en Costa Rica: Estadísticas 2018 y precios 2019. Oficina Nacional Forestal. https://onfcr.org/media/uploads/documents/usos-y-aportes-de-la-madera-2019.pdf
Beltrame, R., Bisognin, D. A., Mattos, B. D., Cargnelutti Filho, A., Haselein, C. R., Gatto, D. A., & dos Santos, G. A. (2012). Desempenho silvicultural e seleção precoce de clones de híbridos de eucalipto. Pesquisa Agropecuária Brasileira, 47(6), 791–796. https://doi.org/10.1590/S0100-204X2012000600009
Chen, X., Hawkins, B., Xie, C. Y., & Ying, C. C. (2003). Age trends in genetic parameters and early selection of lodgepole pine provenances with particular reference to the lambeth model. Forest Genetics, 10(3), 249–258. https://kf.tuzvo.sk/sites/default/files/FG10-3_249-258.pdf
de Resende, M. D. V. (2016). Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330–339. https://doi.org/10.1590/1984-70332016v16n4a49
de Resende, M. D. V., & Duarte, J. B. (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(3), 182−194.
Dean, C. A., Cotterill, P. P., & Burdon, R. D. (2006). Early selection of Radiata Pine. I. Trends over time in additive and dominance genetic variances and covariances of growth traits. Silvae Genetica, 55(1–6), 182–191. https://doi.org/10.1515/sg-2006-0025
Diao, S., Hou, Y., Xie, Y., & Sun, X. (2016). Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genetics, 17(1), 104−115. https://doi.org/10.1186/s12863-016-0400-7
Foster, G. S., & Shaw, D. V. (1988). Using clonal replicates to explore genetic variation in a perennial plant species. Theoretical and Applied Genetics, 76, 788–794. https://doi.org/10.1007/BF00303527
Gwaze, D. P., Bridgwater, F. E., Byram, T. D., Woolliams, J. A., & Williams, C. G. (2000). Predicting age-age genetic correlations in tree-breeding programs: A case study of Pinus taeda L. Theoretical and Applied Genetics, 100(2), 199–206. https://doi.org/10.1007/s001220050027
Hodge, G. R., & Dvorak, W. S. (2004). The CAMCORE international provenance/progeny trials of Gmelina arborea: Genetic parameters and potential gain. New Forests, 28(2/3), 147–166. https://doi.org/10.1023/B:NEFO.0000040942.34566.a7
Instituto de Desarrollo Rural. (2015). Caracterización del Territorio Siquirres-Guácimo. http://obturcaribe.ucr.ac.cr/documentos-publicaciones/planes-y-programas-n/inder/187-caracterizacion-siquirres-guacimo
Instituto Meteorológico Nacional. (2005). Atlas Climatológico de Costa Rica. https://www.imn.ac.cr/atlas-climatologico.
Kumar, A. (2007). Growth Performance and variability in different clones of Gmelina arborea (Roxb.). Silvae Genetica, 56(1–6), 32–36. https://doi.org/10.1515/sg-2007-0005
Lauridsen, E. B., & Kjaer, E. D. (2002). Provenance research in Gmelina arborea Roxb. A summary of results from three decades of research and a discussion of how to use them. International Forestry Review, 4(2), 1–15.
Lokmal, N. (1994). Genetic parameters of Gmelina arborea: height and diameter growth. Journal of Tropical Forest Science, 7(2), 323−331. http://www.jstor.org/stable/43581818
Mata-Chinchilla, R., & Castro-Chinchilla, J. (2019). Geoportal de suelos de Costa Rica como bien público al servicio del país. Revista Tecnología en Marcha, 32, 51–56. https://doi.org/10.18845/tm.v32i7.4259
Moraes, C. B., Brizolla, T. F., Teixeira, L. G., Zimback L., Tambarussi, E. V., Chaves, R., & Mori, E. S. (2014). Estimates of genetic parameters for selection of trees in Eucalyptus. Scientia Forestalis, 42(104), 623−629. http://www.ipef.br/publicacoes/scientia/nr104/cap16.pdf
Moya, R. (2004). Gmelina arborea en Costa Rica. Bois et Forest Des Tropiques, 279(1), 47−57.
Murillo, O., Meza, A., & Cabrera, J. M. (2004). Estimación del valor real y del valor de mercado en pie de la plantación forestal. Revista Agronomía Costarricense, 28(1), 47–55. http://www.mag.go.cr/rev_agr/v28n01_047.pdf
Padua, F. M. (2004). Juvenile selection of Gmelina arborea clones in the Philippines. New Forests, 28(2/3), 195–200. https://doi.org/10.1023/B:NEFO.0000040946.46722.1c
Pavlotzky, B., & Murillo, O. (2014). Ganancia genética esperada e interacción genotipo-ambiente en Acacia mangium en la zona norte de Costa Rica. Agronomía Costarricense, 38(2), 7−17. https://doi.org/10.15517/rac.v38i2.17270
Rweyongeza, D. M. (2016). A new approach to prediction of the age-age correlation for use in tree breeding. Annals of Forest Science, 73(4), 1099–1111. https://doi.org/10.1007/s13595-016-0570-5
Santos, A. M., Rosado, S. C. da S., & Oliveira, A. N. (2014). Estimation of genetic parameters and verification of early selection efficiency in baru (Dipteryx alata). Crop Breeding and Applied Biotechnology, 14(4), 238–243. https://doi.org/10.1590/1984-70332014v14n4a37
Weng, Y. H., Tosh, K. J., Park, Y. S., & Fullarton, M. S. (2007). Age-related trends in genetic parameters for Jack Pine and their implications for early selection. Silvae Genetica, 56(1–6), 242–252. https://doi.org/10.1515/sg-2007-0035
Wijoyo, F. S. (2000). A study of genetic parameters of Gmelina arborea Roxb. From Thailand grown in 5 countries [Unplublished Magister Sience dissertation] North Carolina State University.
Xiang, B., Li, B., & Isik, F. (2003). Time trend of genetic parameters in growth traits of Pinus taeda L. Silvae Genetica, 52(3–4), 114–121.
Ye, T. Z., & Jayawickrama, K. J. S. (2012). Early selection for improving volume growth in Coastal douglas-fir breeding programs. Silvae Genetica, 61(1–6), 186–198. https://doi.org/10.1515/sg-2012-0024
Zimback, L., Mori, E. S., Brizolla, T. F., & Chaves, R. (2011). Correlações entre caracteres silviculturais durante o crescimento de Eucalyptus grandis Hill ex Maiden. Revista do Instituto Florestal de São Paulo, 23(1), 57−67. http://hdl.handle.net/11449/141157
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).