Effectiveness of chlorine and peracetic acid in the disinfection of minimally processed cabbage (Brassica oleracea) and green plantain (Musa AAB)
DOI:
https://doi.org/10.15517/am.2024.59984Keywords:
Escherichia coli, food processing, organoleptic analysis, vegetablesAbstract
Introduction. The consumption of minimally processed vegetables may pose health risks, making it imperative to understand the effectiveness of their disinfection. Objective. To evaluate the effect of peeling, cutting, and shredding on the effectiveness of sodium hypoclorite or chlorine (HClO) and peracetic acid (C2H4O3) in disinfecting cabbage (Brassica oleracea) and green plantain (Musa AAB). Materials and methods. The research was conducted at Centro Nacional de Ciencia y Tecnología de Alimentos, Costa Rica, in 2012. Cabbage and green plantain (unpeeled, peeled, cut, or shredded) were disinfected by immersion in chlorine solutions (200 mg l-1) and peracetic acid (80 mg l-1) to evaluate desinfectant concentration over time, the reduction of Escherichia coli in shredded samples, and their sensory characteristics. Results. Both disinfectants were stable in time except when the shredded vegetables were treated with the concentration decreasing faster for chlorine and shredded green plantain. In shredded cabbage, a greater reduction of E. coli (6,767 log10 UCF/g) was observed when peracetic acid was used compared to chlorine (4 log10 UCF/g), although both equal to the control (4 log10 UCF/g). In shredded plantain, reductions with chlorine (6 ± 1 log10 UCF/g) and peracetic acid (5,7 ± 0,7 log10 UCF/g) were different from those with water (3,17 ± 0,06 log10 UCF/g), but there were no significant differences between the two disinfectants. Sensory differences were detected for shredded cabbage disinfected with chlorine or peracetic acid, however, consumer acceptance must be assessed. Conclusions. The level of vegetable subdivision affected the effeciveness of chlorine and peracetic acid when disinfecting cabbage and green plantain. Peracetic acid provides greater reductions of E. coli than chlorine in the case of shredded cabbage and equivalent reductions in shredded green plantain.
Downloads
References
Abnavi, M. D., Alradaan, A., Munther, D., Kothapalli, C. R., & Srinivasan, P. (2019). Modeling of free chlorine consumption and Escherichia coli O157:H7 cross-contamination during fresh-cut produce wash cycles. Journal of Food Science, 84(10), 2736–2744. https://doi.org/10.1111/1750-3841.14774
Aguayo, E., Gómez, P., Artés-Hernández, F., & Artés, F. (2017). Tratamientos químicos desinfectantes de hortalizas de IV gama: ozono, agua electrolizada y ácido peracético. Agrociencia Uruguay, 21(1), 7–14. https://agrocienciauruguay.uy/index.php/agrociencia/article/view/171/150
Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits, and cereals. Applied Food Research, 2(1), Article 100122. https://doi.org/10.1016/j.afres.2022.100122
Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical reviews in food science and nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180
Banach, J. L., Sampers, I., Van Haute, S., & Van der Fels-Klerx, H. J. (2015). Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. International Journal of Environmental Research and Public Health, 12(8), 8658–8677. https://doi.org/10.3390/ijerph120808658
Behrsing, J., Winkler, S., Franz, P., & Premier, R. (2000). Efficacy of chlorine for inactivation of Escherichia coli on vegetables. Postharvest Biology and Technology, 19(2), 187–192. https://doi.org/10.1016/S0925-5214(00)00092-2
Cai, S., Worobo, R. W., & Snyder, A. B. (2018). Outgraded produce variably retains surface inoculated Escherichia coli through washing. International Journal of Food Microbiology, 269, 27–35. https://doi.org/10.1016/j.ijfoodmicro.2018.01.012
Carstens, C. K., Salazar, J. K., & Darkoh, C. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Frontiers in Microbiology, 10, Article 2667. https://doi.org/10.3389/FMICB.2019.02667
Castro Montero, E., & de Hombre Morgado, R. A. (2007). Parámetros mecánicos y textura de los alimentos. Universidad de Chile. https://repositorio.uchile.cl/handle/2250/121381
Chang, J. W. (2015). Food safety research for fresh produce [Master of Science thesis, Purdue University]. Purdue Open Access Thesis. https://docs.lib.purdue.edu/open_access_theses/1098
Chhetri, V. S., Janes, M. E., King, J. M., Doerrler, W., & Adhirikari, A. (2019). Effect of residual chlorine and organic acids on survival and attachment of Escherichia coli O157:H7 and Listeria monocytogenes on spinach leaves during storage. LWT, 105, 298–305. https://doi.org/10.1016/j.lwt.2019.02.019
Chinchkar, A. V., Singh, A., Singh, S. V., Acharya, A. M., & Kamble, M. G. (2022). Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. Journal of Food Processing and Preservation, 46(10), Article e16495. https://doi.org/10.1111/jfpp.16495
Cruz Mendoza, I., Ortiz Luna, E., Dreher Pozo, M., Villavicencio Vásquez, M., Coello Montoya, D., Chuchuca Moran, G., Galarza Romero, L., Yépez, X., Salazar, R., Romero-Peña, M., & Coronel León, J. (2022). Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT, 165, Article 113714. https://doi.org/10.1016/j.lwt.2022.113714
Dar, A. H., Kumar, N., Shah, S., Shams, R., & Aga, M. B. (2022). Processing of fruits and vegetables. In H. K. Sharma, & N. Kumar (Eds.), Agro-processing and food engineering (pp. 535–579). Springer, Singapore. https://doi.org/10.1007/978-981-16-7289-7_13
Davidovich-Young, G., Wong-González, E., De la Asunción-Romero, R., & Bustamante-Mora, M. (2023). Effect of peeling, cutting, or shredding of lettuce, carrot, or potato on the efficacy of chlorine disinfection. Food Science and Technology International, Online first. https://doi.org/10.1177/10820132231213671
Dávila-Aviña, J. E., Ríos-López, A., Aguayo-Acosta, A., & Solís-Soto, L. Y. (2020). 10-Probiotics in fresh-cut produce. In M. Wasim Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 205–223). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00010-0
De Corato, U. (2019). The market of the minimally processed fresh produce needs of safer strategies for improving shelf life and quality: a critical overview of the traditional technologies. Open Access Journal of Agricultural Research, 4(1), Article 000216. http://doi.org/10.23880/oajar-16000216
Delaquis, P. J., Fukumoto, L. R., Toivonen, P. M. A., & Cliff, M. A. (2004). Implications of wash water chlorination and temperature for the microbiological and sensory properties of fresh-cut iceberg lettuce. Postharvest Biology and Technology 31(1), 81–91. https://doi.org/10.1016/S0925-5214(03)00134-0
Deng, L. -Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. -W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 60(15), 2481–2508. https://doi.org/10.1080/10408398.2019.1649633
do Prado Vilarin, S., Rocha Teixeira, T. M., Gonçalves Lima, C. M., Pamplona Pagnossa, J., Mendonça de Figueiredo, R., Cardoso Medeiros, U. B., & Ferreira Santana, R. (2020). Effect of sanitization on minimally processed cabbage (Brassica oleracea L.). Research, Society and Development, 9(6), Article e59963467. https://doi.org/10.33448/rsd-v9i6.3467
Ferreira Gomes, B. A., Silveira Alexandre, A. C., Vieira De Andrade, G. A., Pereira Zanzini, A., Araújo de Barros, H. E., dos Santos Ferraz e Silva, L. M., Aparecida Costa, P., & de Barros Vilas Boas, E. V. (2023). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 2: physical methods and global market outlook. Food Chemistry Advances, 2, Article 100304. https://doi.org/10.1016/j.focha.2023.100304
Inatsu, Y., Weerakkody, K., Bari, M. L., Hosotani, Y., Nakamura, N., & Kawasaki, S. (2017). The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprout. LWT- Food an Science Technology, 85(Part A), 1–8. https://doi.org/10.1016/j.lwt.2017.06.042
Jnani, D., & Ray, S. D. (2022). Escherichia coli. In P. Wexler (Ed.), Encyclopedia of toxicology (4th ed., Vol. 4, pp. 351–367). Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00190-1
Jo, H. -Y., Tango, C. N., & Oh, D. -H. (2018). Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. LWT, 92, 187–194. https://doi.org/10.1016/j.lwt.2018.02.028
Kramer, G. R., & Doran, M. (2018). Disinfectants and sanitizers are essential to produce safety. Food Safety Magazine. https://www.food-safety.com/articles/5975-disinfectants-and-sanitizers-are-essential-to-produce-safety
Krasaekoopt, W., & Bhandari, B. (2018). Fresh-cut vegetables. In M. Siddiq & M.A. Uebersax (Eds.), Handbook of vegetables and vegetable processing (2nd ed., Chapter 12, pp. 287–316). Wiley. https://doi.org/10.1002/9781119098935.ch12
Lee, H. -H., Hong, S. -I., & Kim, D. (2014). Microbial reduction efficacy of various disinfection treatments on fresh-cut cabbage. Food Science and Nutrition, 2(5), 585–590. https://doi.org/10.1002/fsn3.138
Lippman, B., Yao, S., Huang, R., & Chen, H. (2020). Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. International Journal of Food Microbiology, 323, Article 108590. https://doi.org/10.1016/j.ijfoodmicro.2020.108590
López, L., Romero, J., & Ureta, F. (2001). Tratamientos de desinfección de lechugas (Lactuca sativa) y frutillas (Fragaria chiloensis). Archivos Latinoamericanos de Nutrición 51(4), 376–381. https://www.alanrevista.org/ediciones/2001/4/art-9/
Meireles, A., Giaouris, E., & Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 82, 71–85. https://doi.org/10.1016/J.FOODRES.2016.01.021
Moreb, N., Murphy, A., Jaiswal, S., & Jaiswal, A. K. (2020). Chapter 3- Cabbage. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 33-54). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00003-9
Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology, 103, 321–332. https://doi.org/10.1016/j.tifs.2020.07.009
Murray, K., Wu, F., Shi, J., Xue, S. J., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Quality and Safety, 1(4), 289–301. https://doi.org/10.1093/fqsafe/fyx027
Oyeyinka, B. O., & Afolayan, A. J. (2019). Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (banana) and Musa paradisiaca L. (plantain) fruit compartments. Plants, 8(12), Article 598. https://doi.org/10.3390/plants8120598
Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., & Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. International Journal of Food Microbiology, 285, 92–97. https://doi.org/10.1016/j.ijfoodmicro.2018.07.029
Palma-Salgado, S., Pearlstein, A. J., Luo, Y., Park, H. K., & Feng, H. (2014). Whole-head washing, prior to cutting, provides sanitization advantages for fresh-cut Iceberg lettuce (Latuca sativa L.). International Journal of Food Microbiology, 179, 18–23. https://doi.org/10.1016/j.ijfoodmicro.2014.03.018
Pedrero, D. L., & Pangborn, R. M. (1989). Evaluación sensorial de los alimentos. Alhambra Mexicana.
Pérez-Martínez, B., Ramos-Dubón, E., Ramos-Cortez, S., & Munguía, H. (2021). Evaluación de dos combinaciones de conservantes y su efecto sobre un producto hortícola de IV Gama. Agrociencia, 4(18), 38–49. https://doi.org/10.5281/zenodo.10667947
Petran, R. L., Grieme, L. E., & Foong-Cunningham, S. (2015). Culture methods for enumeration of microorganisms. In Y. Salfinger & L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 687-696). American Public Health Association. https://doi.org/10.2105/MBEF.0222.011
Petri, E., Rodríguez, M., & García, S. (2015). Evaluation of combined disinfection methods for reducing Escherichia coli O157:H7 population on fresh-cut vegetables. International Journal of Environmental Research and Public Health, 12(8), 8678–8690. https://doi.org/10.3390/ijerph120808678
Petri, E., Virto, R., Mottura, M., & Parra, J. (2021). Comparison of peracetic acid and chlorine effectiveness during fresh-cut vegetable processing at industrial scale. Journal of Food Protection, 84(9), 1592–1602. https://doi.org/10.4315/JFP-20-448
Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547
Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks — A review. Cogent Food & Agriculture, 1(1), Article 1121606. https://doi.org/10.1080/23311932.2015.1121606
Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. (2004). A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67(4), 721–731. https://doi.org/10.4315/0362-028X-67.4.721
Sáez-Tonacca, L., Sepúlveda-González, C., Díaz-Ramírez, C., & Palacios-Pino, J. L. (2019). Aceptabilidad de hortalizas de IV gama tratadas mediante diferentes protocolos de desinfección. Agrotecnia de Cuba, 43(1), 65–77. https://www.grupoagricoladecuba.gag.cu/media/Agrotecnia/pdf/43_2019_1/6.pdf
Schlich, P., Dacremont, C., & Brockhoff, P. B. (2000). Application of replicated difference testing. Food Quality and Preference, 11(1–2), 43-46. https://doi.org/10.1016/S0950-3293(99)00037-3
Silveira Alexandre, A. C., Ferreira Gomes, B. A., Nayara Duarte, G., Fabiane Piva, S., Barros Zauza, S., & de Barros Vilas Boas, E. V. (2022). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 1: fundamentals and chemical methods. Journal of Food Processing and Preservation, 46(8), Article e16757. https://doi.org/10.1111/jfpp.16757
Singh, P., Hung, Y. -C., & Qi, H. (2018). Efficacy of peracetic acid in inactivating foodborne pathogens in fresh produce surface. Journal of Food Science, 83(2), 432–439. https://doi.org/10.1111/1750-3841.14028
Stone, H., Bleibaum, R. N., & Thomas, H. A. (2020). Sensory evaluation practices. Academic press.
Tapia, M. R., Gutierrez-Pacheco, M. M., Vazquez-Armenta, F. J., González Aguilar, G. A., Ayala Zavala, J. F., Shafiur Rahman, M, & Wasim Siddiqui, M. (2015). Washing, peeling and cutting of fresh-cut fruits and vegetables. In M. Wassim-Siddiqui, & M. Shafiur-Rahman (Eds.), Minimally Processed Foods: Technologies for Safety, Quality, and Convenience (pp. 57–78). Springer, Cham. https://doi.org/10.1007/978-3-319-10677-9_4
Tudela, J. A., López-Gálvez, F., Allende, A., & Gil, M. I. (2019). Chlorination management in commercial fresh produce processing lines. Food Control, 106, Article 106760. https://doi.org/10.1016/j.foodcont.2019.106760
van Haute, S., Sampers, I., Jacxsens, L., & Uyttendaele, M. (2015). Selection criteria for water disinfection techniques in agricultural practices. Critical Reviews in Food Science and Nutrition, 55(11), 1529–1551. https://doi.org/10.1080/10408398.2012.705360
Vandekinderen, I., Devlieghere, F., Van Camp, J., Kerkaert, B., Cucu, T., Ragaert, P., De Bruyne, J., & De Meulenaer, B. (2009). Effects of food composition on the inactivation of foodborne microorganisms by chlorine dioxide. International Journal of Food Microbiology, 131(2–3), 138–144. https://doi.org/10.1016/j.ijfoodmicro.2009.02.004
Venkitanarayanan, K. S., Lin, C. -M., Bailey, H., & Doyle, M. P. (2002). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes by lactic acid with hydrogen peroxide. Journal of Food Protection, 65(1), 100–105. https://doi.org/10.4315/0362-028x-65.1.100
Weng, S., Luo, Y., Li, J., Zhou, B., Jacangelo, J. G., & Schwab, K. J. (2016). Assessment and speciation of chlorine demand in fresh-cut produce wash water. Food Control, 60, 543–551. https://doi.org/10.1016/j.foodcont.2015.08.031
Yang, X., Yan, R., Chen, Q., & Fu, M. (2020). Analysis of flavor and taste attributes differences treated by chemical preservatives: a case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. Journal of Food Science and Technology, 57, 4371–4382. https://doi.org/10.1007/s13197-020-04474-7
Yoon, J. -H., & Lee, S. -Y. (2018). Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Critical Reviews in Food Science and Nutrition, 58(18), 3189–3208. https://doi.org/10.1080/10408398.2017.1354813
Zhang, L. A. (2013). Removal of chlorine residual in tap water by boiling or adding ascorbic acid. International Journal of Engineering Research and Applications, 3(5), 1647–1651. https://www.ijera.com/papers/Vol3_issue5/JN3516471651.pdf
Zoellner, C., Aguayo-Acosta, A., Wasim Siddiqui, M., & Dávila-Aviña, J. E. (2018). Chapter 2- Peracetic acid in disinfection of fruits and vegetables. In M. Wasim Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (pp. 53–66). Academic Press. https://doi.org/10.1016/B978-0-12-812698-1.00002-9
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Esteban Fatjó-Barboza, Gabriela Davidovich-Young, Eric Wong-González
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).