Effectiveness of chlorine and peracetic acid in the disinfection of minimally processed cabbage (Brassica oleracea) and green plantain (Musa AAB)

Authors

DOI:

https://doi.org/10.15517/am.2024.59984

Keywords:

Escherichia coli, food processing, organoleptic analysis, vegetables

Abstract

Introduction. The consumption of minimally processed vegetables may pose health risks, making it imperative to understand the effectiveness of their disinfection. Objective. To evaluate the effect of peeling, cutting, and shredding on the effectiveness of sodium hypoclorite or chlorine (HClO) and peracetic acid (C2H4O3) in disinfecting cabbage (Brassica oleracea) and green plantain (Musa AAB). Materials and methods. The research was conducted at Centro Nacional de Ciencia y Tecnología de Alimentos, Costa Rica, in 2012. Cabbage and green plantain (unpeeled, peeled, cut, or shredded) were disinfected by immersion in chlorine solutions (200 mg l-1) and peracetic acid (80 mg l-1) to evaluate desinfectant concentration over time, the reduction of Escherichia coli in shredded samples, and their sensory characteristics. Results. Both disinfectants were stable in time except when the shredded vegetables were treated with the concentration decreasing faster for chlorine and shredded green plantain. In shredded cabbage, a greater reduction of E. coli (6,767 log10 UCF/g) was observed when peracetic acid was used compared to chlorine (4 log10 UCF/g), although both equal to the control (4 log10 UCF/g). In shredded plantain, reductions with chlorine (6 ± 1 log10 UCF/g) and peracetic acid (5,7 ± 0,7 log10 UCF/g) were different from those with water (3,17 ± 0,06 log10 UCF/g), but there were no significant differences between the two disinfectants. Sensory differences were detected for shredded cabbage disinfected with chlorine or peracetic acid, however, consumer acceptance must be assessed. Conclusions. The level of vegetable subdivision affected the effeciveness of chlorine and peracetic acid when disinfecting cabbage and green plantain. Peracetic acid provides greater reductions of E. coli than chlorine in the case of shredded cabbage and equivalent reductions in shredded green plantain.

Downloads

Download data is not yet available.

References

Abnavi, M. D., Alradaan, A., Munther, D., Kothapalli, C. R., & Srinivasan, P. (2019). Modeling of free chlorine consumption and Escherichia coli O157:H7 cross-contamination during fresh-cut produce wash cycles. Journal of Food Science, 84(10), 2736–2744. https://doi.org/10.1111/1750-3841.14774

Aguayo, E., Gómez, P., Artés-Hernández, F., & Artés, F. (2017). Tratamientos químicos desinfectantes de hortalizas de IV gama: ozono, agua electrolizada y ácido peracético. Agrociencia Uruguay, 21(1), 7–14. https://agrocienciauruguay.uy/index.php/agrociencia/article/view/171/150

Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits, and cereals. Applied Food Research, 2(1), Article 100122. https://doi.org/10.1016/j.afres.2022.100122

Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical reviews in food science and nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180

Banach, J. L., Sampers, I., Van Haute, S., & Van der Fels-Klerx, H. J. (2015). Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. International Journal of Environmental Research and Public Health, 12(8), 8658–8677. https://doi.org/10.3390/ijerph120808658

Behrsing, J., Winkler, S., Franz, P., & Premier, R. (2000). Efficacy of chlorine for inactivation of Escherichia coli on vegetables. Postharvest Biology and Technology, 19(2), 187–192. https://doi.org/10.1016/S0925-5214(00)00092-2

Cai, S., Worobo, R. W., & Snyder, A. B. (2018). Outgraded produce variably retains surface inoculated Escherichia coli through washing. International Journal of Food Microbiology, 269, 27–35. https://doi.org/10.1016/j.ijfoodmicro.2018.01.012

Carstens, C. K., Salazar, J. K., & Darkoh, C. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Frontiers in Microbiology, 10, Article 2667. https://doi.org/10.3389/FMICB.2019.02667

Castro Montero, E., & de Hombre Morgado, R. A. (2007). Parámetros mecánicos y textura de los alimentos. Universidad de Chile. https://repositorio.uchile.cl/handle/2250/121381

Chang, J. W. (2015). Food safety research for fresh produce [Master of Science thesis, Purdue University]. Purdue Open Access Thesis. https://docs.lib.purdue.edu/open_access_theses/1098

Chhetri, V. S., Janes, M. E., King, J. M., Doerrler, W., & Adhirikari, A. (2019). Effect of residual chlorine and organic acids on survival and attachment of Escherichia coli O157:H7 and Listeria monocytogenes on spinach leaves during storage. LWT, 105, 298–305. https://doi.org/10.1016/j.lwt.2019.02.019

Chinchkar, A. V., Singh, A., Singh, S. V., Acharya, A. M., & Kamble, M. G. (2022). Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. Journal of Food Processing and Preservation, 46(10), Article e16495. https://doi.org/10.1111/jfpp.16495

Cruz Mendoza, I., Ortiz Luna, E., Dreher Pozo, M., Villavicencio Vásquez, M., Coello Montoya, D., Chuchuca Moran, G., Galarza Romero, L., Yépez, X., Salazar, R., Romero-Peña, M., & Coronel León, J. (2022). Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT, 165, Article 113714. https://doi.org/10.1016/j.lwt.2022.113714

Dar, A. H., Kumar, N., Shah, S., Shams, R., & Aga, M. B. (2022). Processing of fruits and vegetables. In H. K. Sharma, & N. Kumar (Eds.), Agro-processing and food engineering (pp. 535–579). Springer, Singapore. https://doi.org/10.1007/978-981-16-7289-7_13

Davidovich-Young, G., Wong-González, E., De la Asunción-Romero, R., & Bustamante-Mora, M. (2023). Effect of peeling, cutting, or shredding of lettuce, carrot, or potato on the efficacy of chlorine disinfection. Food Science and Technology International, Online first. https://doi.org/10.1177/10820132231213671

Dávila-Aviña, J. E., Ríos-López, A., Aguayo-Acosta, A., & Solís-Soto, L. Y. (2020). 10-Probiotics in fresh-cut produce. In M. Wasim Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 205–223). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00010-0

De Corato, U. (2019). The market of the minimally processed fresh produce needs of safer strategies for improving shelf life and quality: a critical overview of the traditional technologies. Open Access Journal of Agricultural Research, 4(1), Article 000216. http://doi.org/10.23880/oajar-16000216

Delaquis, P. J., Fukumoto, L. R., Toivonen, P. M. A., & Cliff, M. A. (2004). Implications of wash water chlorination and temperature for the microbiological and sensory properties of fresh-cut iceberg lettuce. Postharvest Biology and Technology 31(1), 81–91. https://doi.org/10.1016/S0925-5214(03)00134-0

Deng, L. -Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. -W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 60(15), 2481–2508. https://doi.org/10.1080/10408398.2019.1649633

do Prado Vilarin, S., Rocha Teixeira, T. M., Gonçalves Lima, C. M., Pamplona Pagnossa, J., Mendonça de Figueiredo, R., Cardoso Medeiros, U. B., & Ferreira Santana, R. (2020). Effect of sanitization on minimally processed cabbage (Brassica oleracea L.). Research, Society and Development, 9(6), Article e59963467. https://doi.org/10.33448/rsd-v9i6.3467

Ferreira Gomes, B. A., Silveira Alexandre, A. C., Vieira De Andrade, G. A., Pereira Zanzini, A., Araújo de Barros, H. E., dos Santos Ferraz e Silva, L. M., Aparecida Costa, P., & de Barros Vilas Boas, E. V. (2023). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 2: physical methods and global market outlook. Food Chemistry Advances, 2, Article 100304. https://doi.org/10.1016/j.focha.2023.100304

Inatsu, Y., Weerakkody, K., Bari, M. L., Hosotani, Y., Nakamura, N., & Kawasaki, S. (2017). The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprout. LWT- Food an Science Technology, 85(Part A), 1–8. https://doi.org/10.1016/j.lwt.2017.06.042

Jnani, D., & Ray, S. D. (2022). Escherichia coli. In P. Wexler (Ed.), Encyclopedia of toxicology (4th ed., Vol. 4, pp. 351–367). Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00190-1

Jo, H. -Y., Tango, C. N., & Oh, D. -H. (2018). Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. LWT, 92, 187–194. https://doi.org/10.1016/j.lwt.2018.02.028

Kramer, G. R., & Doran, M. (2018). Disinfectants and sanitizers are essential to produce safety. Food Safety Magazine. https://www.food-safety.com/articles/5975-disinfectants-and-sanitizers-are-essential-to-produce-safety

Krasaekoopt, W., & Bhandari, B. (2018). Fresh-cut vegetables. In M. Siddiq & M.A. Uebersax (Eds.), Handbook of vegetables and vegetable processing (2nd ed., Chapter 12, pp. 287–316). Wiley. https://doi.org/10.1002/9781119098935.ch12

Lee, H. -H., Hong, S. -I., & Kim, D. (2014). Microbial reduction efficacy of various disinfection treatments on fresh-cut cabbage. Food Science and Nutrition, 2(5), 585–590. https://doi.org/10.1002/fsn3.138

Lippman, B., Yao, S., Huang, R., & Chen, H. (2020). Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. International Journal of Food Microbiology, 323, Article 108590. https://doi.org/10.1016/j.ijfoodmicro.2020.108590

López, L., Romero, J., & Ureta, F. (2001). Tratamientos de desinfección de lechugas (Lactuca sativa) y frutillas (Fragaria chiloensis). Archivos Latinoamericanos de Nutrición 51(4), 376–381. https://www.alanrevista.org/ediciones/2001/4/art-9/

Meireles, A., Giaouris, E., & Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 82, 71–85. https://doi.org/10.1016/J.FOODRES.2016.01.021

Moreb, N., Murphy, A., Jaiswal, S., & Jaiswal, A. K. (2020). Chapter 3- Cabbage. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 33-54). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00003-9

Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology, 103, 321–332. https://doi.org/10.1016/j.tifs.2020.07.009

Murray, K., Wu, F., Shi, J., Xue, S. J., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Quality and Safety, 1(4), 289–301. https://doi.org/10.1093/fqsafe/fyx027

Oyeyinka, B. O., & Afolayan, A. J. (2019). Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (banana) and Musa paradisiaca L. (plantain) fruit compartments. Plants, 8(12), Article 598. https://doi.org/10.3390/plants8120598

Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., & Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. International Journal of Food Microbiology, 285, 92–97. https://doi.org/10.1016/j.ijfoodmicro.2018.07.029

Palma-Salgado, S., Pearlstein, A. J., Luo, Y., Park, H. K., & Feng, H. (2014). Whole-head washing, prior to cutting, provides sanitization advantages for fresh-cut Iceberg lettuce (Latuca sativa L.). International Journal of Food Microbiology, 179, 18–23. https://doi.org/10.1016/j.ijfoodmicro.2014.03.018

Pedrero, D. L., & Pangborn, R. M. (1989). Evaluación sensorial de los alimentos. Alhambra Mexicana.

Pérez-Martínez, B., Ramos-Dubón, E., Ramos-Cortez, S., & Munguía, H. (2021). Evaluación de dos combinaciones de conservantes y su efecto sobre un producto hortícola de IV Gama. Agrociencia, 4(18), 38–49. https://doi.org/10.5281/zenodo.10667947

Petran, R. L., Grieme, L. E., & Foong-Cunningham, S. (2015). Culture methods for enumeration of microorganisms. In Y. Salfinger & L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 687-696). American Public Health Association. https://doi.org/10.2105/MBEF.0222.011

Petri, E., Rodríguez, M., & García, S. (2015). Evaluation of combined disinfection methods for reducing Escherichia coli O157:H7 population on fresh-cut vegetables. International Journal of Environmental Research and Public Health, 12(8), 8678–8690. https://doi.org/10.3390/ijerph120808678

Petri, E., Virto, R., Mottura, M., & Parra, J. (2021). Comparison of peracetic acid and chlorine effectiveness during fresh-cut vegetable processing at industrial scale. Journal of Food Protection, 84(9), 1592–1602. https://doi.org/10.4315/JFP-20-448

Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547

Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks — A review. Cogent Food & Agriculture, 1(1), Article 1121606. https://doi.org/10.1080/23311932.2015.1121606

Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. (2004). A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67(4), 721–731. https://doi.org/10.4315/0362-028X-67.4.721

Sáez-Tonacca, L., Sepúlveda-González, C., Díaz-Ramírez, C., & Palacios-Pino, J. L. (2019). Aceptabilidad de hortalizas de IV gama tratadas mediante diferentes protocolos de desinfección. Agrotecnia de Cuba, 43(1), 65–77. https://www.grupoagricoladecuba.gag.cu/media/Agrotecnia/pdf/43_2019_1/6.pdf

Schlich, P., Dacremont, C., & Brockhoff, P. B. (2000). Application of replicated difference testing. Food Quality and Preference, 11(1–2), 43-46. https://doi.org/10.1016/S0950-3293(99)00037-3

Silveira Alexandre, A. C., Ferreira Gomes, B. A., Nayara Duarte, G., Fabiane Piva, S., Barros Zauza, S., & de Barros Vilas Boas, E. V. (2022). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 1: fundamentals and chemical methods. Journal of Food Processing and Preservation, 46(8), Article e16757. https://doi.org/10.1111/jfpp.16757

Singh, P., Hung, Y. -C., & Qi, H. (2018). Efficacy of peracetic acid in inactivating foodborne pathogens in fresh produce surface. Journal of Food Science, 83(2), 432–439. https://doi.org/10.1111/1750-3841.14028

Stone, H., Bleibaum, R. N., & Thomas, H. A. (2020). Sensory evaluation practices. Academic press.

Tapia, M. R., Gutierrez-Pacheco, M. M., Vazquez-Armenta, F. J., González Aguilar, G. A., Ayala Zavala, J. F., Shafiur Rahman, M, & Wasim Siddiqui, M. (2015). Washing, peeling and cutting of fresh-cut fruits and vegetables. In M. Wassim-Siddiqui, & M. Shafiur-Rahman (Eds.), Minimally Processed Foods: Technologies for Safety, Quality, and Convenience (pp. 57–78). Springer, Cham. https://doi.org/10.1007/978-3-319-10677-9_4

Tudela, J. A., López-Gálvez, F., Allende, A., & Gil, M. I. (2019). Chlorination management in commercial fresh produce processing lines. Food Control, 106, Article 106760. https://doi.org/10.1016/j.foodcont.2019.106760

van Haute, S., Sampers, I., Jacxsens, L., & Uyttendaele, M. (2015). Selection criteria for water disinfection techniques in agricultural practices. Critical Reviews in Food Science and Nutrition, 55(11), 1529–1551. https://doi.org/10.1080/10408398.2012.705360

Vandekinderen, I., Devlieghere, F., Van Camp, J., Kerkaert, B., Cucu, T., Ragaert, P., De Bruyne, J., & De Meulenaer, B. (2009). Effects of food composition on the inactivation of foodborne microorganisms by chlorine dioxide. International Journal of Food Microbiology, 131(2–3), 138–144. https://doi.org/10.1016/j.ijfoodmicro.2009.02.004

Venkitanarayanan, K. S., Lin, C. -M., Bailey, H., & Doyle, M. P. (2002). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes by lactic acid with hydrogen peroxide. Journal of Food Protection, 65(1), 100–105. https://doi.org/10.4315/0362-028x-65.1.100

Weng, S., Luo, Y., Li, J., Zhou, B., Jacangelo, J. G., & Schwab, K. J. (2016). Assessment and speciation of chlorine demand in fresh-cut produce wash water. Food Control, 60, 543–551. https://doi.org/10.1016/j.foodcont.2015.08.031

Yang, X., Yan, R., Chen, Q., & Fu, M. (2020). Analysis of flavor and taste attributes differences treated by chemical preservatives: a case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. Journal of Food Science and Technology, 57, 4371–4382. https://doi.org/10.1007/s13197-020-04474-7

Yoon, J. -H., & Lee, S. -Y. (2018). Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Critical Reviews in Food Science and Nutrition, 58(18), 3189–3208. https://doi.org/10.1080/10408398.2017.1354813

Zhang, L. A. (2013). Removal of chlorine residual in tap water by boiling or adding ascorbic acid. International Journal of Engineering Research and Applications, 3(5), 1647–1651. https://www.ijera.com/papers/Vol3_issue5/JN3516471651.pdf

Zoellner, C., Aguayo-Acosta, A., Wasim Siddiqui, M., & Dávila-Aviña, J. E. (2018). Chapter 2- Peracetic acid in disinfection of fruits and vegetables. In M. Wasim Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (pp. 53–66). Academic Press. https://doi.org/10.1016/B978-0-12-812698-1.00002-9

Published

2024-11-15

How to Cite

Fatjó-Barboza, E., Davidovich-Young, G., & Wong-González, E. (2024). Effectiveness of chlorine and peracetic acid in the disinfection of minimally processed cabbage (Brassica oleracea) and green plantain (Musa AAB). Agronomía Mesoamericana, 35(Especial 1), 59984. https://doi.org/10.15517/am.2024.59984