Efectividad del cloro y ácido peracético en la desinfección de repollo (Brassica oleracea) y plátano verde (Musa AAB) mínimamente procesado
DOI:
https://doi.org/10.15517/am.2024.59984Palabras clave:
Escherichia coli, análisis organoléptico, procesamiento de alimentos, hortalizasResumen
Introducción. El consumo de vegetales mínimamente procesados puede representar problemas para la salud, por lo que entender la efectividad de su desinfección es imperante. Objetivo. Evaluar el efecto del pelado, troceado y rallado sobre la efectividad del hipoclorito de sodio o cloro (HClO) y el ácido peracético (C2H4O3) en la desinfección de repollo (Brassica oleracea) y plátano verde (Musa AAB). Materiales y métodos. La investigación se realizó en el Centro Nacional de Ciencia y Tecnología de Alimentos, Costa Rica, 2012. Se desinfectó por inmersión repollo y plátano verde (sin pelar, pelado, cortado o rallado), en soluciones de cloro (200 mg l-1) y ácido peracético (80 mg l-1), para evaluar la concentración de desinfectante en el tiempo, la reducción de Escherichia coli en la presentación rallada y sus características sensoriales. Resultados. Ambos desinfectantes fueron estables en el tiempo, excepto al desinfectar los vegetales rallados, donde la concentración disminuyó más rápido para el cloro y el plátano verde. En repollo rallado ocurrió una mayor reducción de E. coli cuando se utilizó ácido peracético (6,767 ± 0,007 log10 UCF/g) en comparación con cloro (4 ± 1 log10 UCF/g) aunque iguales al control con agua (4 ± 1 log10 UCF/g). En plátano rallado, las reducciones con cloro (6 ± 1 log10 UCF/g) y ácido peracético (5,7 ± 0,7 log10 UCF/g) fueron distintas de la del agua (3,17 ± 0,06 log10 UCF/g), pero no hubo diferencias significativas entre ellas. Se detectaron diferencias sensoriales para el repollo rallado desinfectado con cloro o ácido peracético, sin embargo, debe estudiarse la aceptación del producto por parte del consumidor. Conclusiones. El nivel de subdivisión del vegetal afectó la efectividad del cloro y el ácido peracético cuando se desinfectó repollo y plátano verde. El ácido peracético proveyó mayores reducciones de E. coli que el cloro en el caso del repollo rallado y reducciones equivalentes en plátano verde rallado.
Descargas
Citas
Abnavi, M. D., Alradaan, A., Munther, D., Kothapalli, C. R., & Srinivasan, P. (2019). Modeling of free chlorine consumption and Escherichia coli O157:H7 cross-contamination during fresh-cut produce wash cycles. Journal of Food Science, 84(10), 2736–2744. https://doi.org/10.1111/1750-3841.14774
Aguayo, E., Gómez, P., Artés-Hernández, F., & Artés, F. (2017). Tratamientos químicos desinfectantes de hortalizas de IV gama: ozono, agua electrolizada y ácido peracético. Agrociencia Uruguay, 21(1), 7–14. https://agrocienciauruguay.uy/index.php/agrociencia/article/view/171/150
Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits, and cereals. Applied Food Research, 2(1), Article 100122. https://doi.org/10.1016/j.afres.2022.100122
Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2018). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical reviews in food science and nutrition, 58(15), 2632–2649. https://doi.org/10.1080/10408398.2017.1339180
Banach, J. L., Sampers, I., Van Haute, S., & Van der Fels-Klerx, H. J. (2015). Effect of disinfectants on preventing the cross-contamination of pathogens in fresh produce washing water. International Journal of Environmental Research and Public Health, 12(8), 8658–8677. https://doi.org/10.3390/ijerph120808658
Behrsing, J., Winkler, S., Franz, P., & Premier, R. (2000). Efficacy of chlorine for inactivation of Escherichia coli on vegetables. Postharvest Biology and Technology, 19(2), 187–192. https://doi.org/10.1016/S0925-5214(00)00092-2
Cai, S., Worobo, R. W., & Snyder, A. B. (2018). Outgraded produce variably retains surface inoculated Escherichia coli through washing. International Journal of Food Microbiology, 269, 27–35. https://doi.org/10.1016/j.ijfoodmicro.2018.01.012
Carstens, C. K., Salazar, J. K., & Darkoh, C. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Frontiers in Microbiology, 10, Article 2667. https://doi.org/10.3389/FMICB.2019.02667
Castro Montero, E., & de Hombre Morgado, R. A. (2007). Parámetros mecánicos y textura de los alimentos. Universidad de Chile. https://repositorio.uchile.cl/handle/2250/121381
Chang, J. W. (2015). Food safety research for fresh produce [Master of Science thesis, Purdue University]. Purdue Open Access Thesis. https://docs.lib.purdue.edu/open_access_theses/1098
Chhetri, V. S., Janes, M. E., King, J. M., Doerrler, W., & Adhirikari, A. (2019). Effect of residual chlorine and organic acids on survival and attachment of Escherichia coli O157:H7 and Listeria monocytogenes on spinach leaves during storage. LWT, 105, 298–305. https://doi.org/10.1016/j.lwt.2019.02.019
Chinchkar, A. V., Singh, A., Singh, S. V., Acharya, A. M., & Kamble, M. G. (2022). Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. Journal of Food Processing and Preservation, 46(10), Article e16495. https://doi.org/10.1111/jfpp.16495
Cruz Mendoza, I., Ortiz Luna, E., Dreher Pozo, M., Villavicencio Vásquez, M., Coello Montoya, D., Chuchuca Moran, G., Galarza Romero, L., Yépez, X., Salazar, R., Romero-Peña, M., & Coronel León, J. (2022). Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT, 165, Article 113714. https://doi.org/10.1016/j.lwt.2022.113714
Dar, A. H., Kumar, N., Shah, S., Shams, R., & Aga, M. B. (2022). Processing of fruits and vegetables. In H. K. Sharma, & N. Kumar (Eds.), Agro-processing and food engineering (pp. 535–579). Springer, Singapore. https://doi.org/10.1007/978-981-16-7289-7_13
Davidovich-Young, G., Wong-González, E., De la Asunción-Romero, R., & Bustamante-Mora, M. (2023). Effect of peeling, cutting, or shredding of lettuce, carrot, or potato on the efficacy of chlorine disinfection. Food Science and Technology International, Online first. https://doi.org/10.1177/10820132231213671
Dávila-Aviña, J. E., Ríos-López, A., Aguayo-Acosta, A., & Solís-Soto, L. Y. (2020). 10-Probiotics in fresh-cut produce. In M. Wasim Siddiqui (Ed.), Fresh-cut fruits and vegetables (pp. 205–223). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00010-0
De Corato, U. (2019). The market of the minimally processed fresh produce needs of safer strategies for improving shelf life and quality: a critical overview of the traditional technologies. Open Access Journal of Agricultural Research, 4(1), Article 000216. http://doi.org/10.23880/oajar-16000216
Delaquis, P. J., Fukumoto, L. R., Toivonen, P. M. A., & Cliff, M. A. (2004). Implications of wash water chlorination and temperature for the microbiological and sensory properties of fresh-cut iceberg lettuce. Postharvest Biology and Technology 31(1), 81–91. https://doi.org/10.1016/S0925-5214(03)00134-0
Deng, L. -Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. -W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 60(15), 2481–2508. https://doi.org/10.1080/10408398.2019.1649633
do Prado Vilarin, S., Rocha Teixeira, T. M., Gonçalves Lima, C. M., Pamplona Pagnossa, J., Mendonça de Figueiredo, R., Cardoso Medeiros, U. B., & Ferreira Santana, R. (2020). Effect of sanitization on minimally processed cabbage (Brassica oleracea L.). Research, Society and Development, 9(6), Article e59963467. https://doi.org/10.33448/rsd-v9i6.3467
Ferreira Gomes, B. A., Silveira Alexandre, A. C., Vieira De Andrade, G. A., Pereira Zanzini, A., Araújo de Barros, H. E., dos Santos Ferraz e Silva, L. M., Aparecida Costa, P., & de Barros Vilas Boas, E. V. (2023). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 2: physical methods and global market outlook. Food Chemistry Advances, 2, Article 100304. https://doi.org/10.1016/j.focha.2023.100304
Inatsu, Y., Weerakkody, K., Bari, M. L., Hosotani, Y., Nakamura, N., & Kawasaki, S. (2017). The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprout. LWT- Food an Science Technology, 85(Part A), 1–8. https://doi.org/10.1016/j.lwt.2017.06.042
Jnani, D., & Ray, S. D. (2022). Escherichia coli. In P. Wexler (Ed.), Encyclopedia of toxicology (4th ed., Vol. 4, pp. 351–367). Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00190-1
Jo, H. -Y., Tango, C. N., & Oh, D. -H. (2018). Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. LWT, 92, 187–194. https://doi.org/10.1016/j.lwt.2018.02.028
Kramer, G. R., & Doran, M. (2018). Disinfectants and sanitizers are essential to produce safety. Food Safety Magazine. https://www.food-safety.com/articles/5975-disinfectants-and-sanitizers-are-essential-to-produce-safety
Krasaekoopt, W., & Bhandari, B. (2018). Fresh-cut vegetables. In M. Siddiq & M.A. Uebersax (Eds.), Handbook of vegetables and vegetable processing (2nd ed., Chapter 12, pp. 287–316). Wiley. https://doi.org/10.1002/9781119098935.ch12
Lee, H. -H., Hong, S. -I., & Kim, D. (2014). Microbial reduction efficacy of various disinfection treatments on fresh-cut cabbage. Food Science and Nutrition, 2(5), 585–590. https://doi.org/10.1002/fsn3.138
Lippman, B., Yao, S., Huang, R., & Chen, H. (2020). Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. International Journal of Food Microbiology, 323, Article 108590. https://doi.org/10.1016/j.ijfoodmicro.2020.108590
López, L., Romero, J., & Ureta, F. (2001). Tratamientos de desinfección de lechugas (Lactuca sativa) y frutillas (Fragaria chiloensis). Archivos Latinoamericanos de Nutrición 51(4), 376–381. https://www.alanrevista.org/ediciones/2001/4/art-9/
Meireles, A., Giaouris, E., & Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 82, 71–85. https://doi.org/10.1016/J.FOODRES.2016.01.021
Moreb, N., Murphy, A., Jaiswal, S., & Jaiswal, A. K. (2020). Chapter 3- Cabbage. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 33-54). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00003-9
Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology, 103, 321–332. https://doi.org/10.1016/j.tifs.2020.07.009
Murray, K., Wu, F., Shi, J., Xue, S. J., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Quality and Safety, 1(4), 289–301. https://doi.org/10.1093/fqsafe/fyx027
Oyeyinka, B. O., & Afolayan, A. J. (2019). Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (banana) and Musa paradisiaca L. (plantain) fruit compartments. Plants, 8(12), Article 598. https://doi.org/10.3390/plants8120598
Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., & Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. International Journal of Food Microbiology, 285, 92–97. https://doi.org/10.1016/j.ijfoodmicro.2018.07.029
Palma-Salgado, S., Pearlstein, A. J., Luo, Y., Park, H. K., & Feng, H. (2014). Whole-head washing, prior to cutting, provides sanitization advantages for fresh-cut Iceberg lettuce (Latuca sativa L.). International Journal of Food Microbiology, 179, 18–23. https://doi.org/10.1016/j.ijfoodmicro.2014.03.018
Pedrero, D. L., & Pangborn, R. M. (1989). Evaluación sensorial de los alimentos. Alhambra Mexicana.
Pérez-Martínez, B., Ramos-Dubón, E., Ramos-Cortez, S., & Munguía, H. (2021). Evaluación de dos combinaciones de conservantes y su efecto sobre un producto hortícola de IV Gama. Agrociencia, 4(18), 38–49. https://doi.org/10.5281/zenodo.10667947
Petran, R. L., Grieme, L. E., & Foong-Cunningham, S. (2015). Culture methods for enumeration of microorganisms. In Y. Salfinger & L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 687-696). American Public Health Association. https://doi.org/10.2105/MBEF.0222.011
Petri, E., Rodríguez, M., & García, S. (2015). Evaluation of combined disinfection methods for reducing Escherichia coli O157:H7 population on fresh-cut vegetables. International Journal of Environmental Research and Public Health, 12(8), 8678–8690. https://doi.org/10.3390/ijerph120808678
Petri, E., Virto, R., Mottura, M., & Parra, J. (2021). Comparison of peracetic acid and chlorine effectiveness during fresh-cut vegetable processing at industrial scale. Journal of Food Protection, 84(9), 1592–1602. https://doi.org/10.4315/JFP-20-448
Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547
Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks — A review. Cogent Food & Agriculture, 1(1), Article 1121606. https://doi.org/10.1080/23311932.2015.1121606
Rodgers, S. L., Cash, J. N., Siddiq, M., & Ryser, E. T. (2004). A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. Journal of Food Protection, 67(4), 721–731. https://doi.org/10.4315/0362-028X-67.4.721
Sáez-Tonacca, L., Sepúlveda-González, C., Díaz-Ramírez, C., & Palacios-Pino, J. L. (2019). Aceptabilidad de hortalizas de IV gama tratadas mediante diferentes protocolos de desinfección. Agrotecnia de Cuba, 43(1), 65–77. https://www.grupoagricoladecuba.gag.cu/media/Agrotecnia/pdf/43_2019_1/6.pdf
Schlich, P., Dacremont, C., & Brockhoff, P. B. (2000). Application of replicated difference testing. Food Quality and Preference, 11(1–2), 43-46. https://doi.org/10.1016/S0950-3293(99)00037-3
Silveira Alexandre, A. C., Ferreira Gomes, B. A., Nayara Duarte, G., Fabiane Piva, S., Barros Zauza, S., & de Barros Vilas Boas, E. V. (2022). Recent advances in processing and preservation of minimally processed fruits and vegetables: a review – part 1: fundamentals and chemical methods. Journal of Food Processing and Preservation, 46(8), Article e16757. https://doi.org/10.1111/jfpp.16757
Singh, P., Hung, Y. -C., & Qi, H. (2018). Efficacy of peracetic acid in inactivating foodborne pathogens in fresh produce surface. Journal of Food Science, 83(2), 432–439. https://doi.org/10.1111/1750-3841.14028
Stone, H., Bleibaum, R. N., & Thomas, H. A. (2020). Sensory evaluation practices. Academic press.
Tapia, M. R., Gutierrez-Pacheco, M. M., Vazquez-Armenta, F. J., González Aguilar, G. A., Ayala Zavala, J. F., Shafiur Rahman, M, & Wasim Siddiqui, M. (2015). Washing, peeling and cutting of fresh-cut fruits and vegetables. In M. Wassim-Siddiqui, & M. Shafiur-Rahman (Eds.), Minimally Processed Foods: Technologies for Safety, Quality, and Convenience (pp. 57–78). Springer, Cham. https://doi.org/10.1007/978-3-319-10677-9_4
Tudela, J. A., López-Gálvez, F., Allende, A., & Gil, M. I. (2019). Chlorination management in commercial fresh produce processing lines. Food Control, 106, Article 106760. https://doi.org/10.1016/j.foodcont.2019.106760
van Haute, S., Sampers, I., Jacxsens, L., & Uyttendaele, M. (2015). Selection criteria for water disinfection techniques in agricultural practices. Critical Reviews in Food Science and Nutrition, 55(11), 1529–1551. https://doi.org/10.1080/10408398.2012.705360
Vandekinderen, I., Devlieghere, F., Van Camp, J., Kerkaert, B., Cucu, T., Ragaert, P., De Bruyne, J., & De Meulenaer, B. (2009). Effects of food composition on the inactivation of foodborne microorganisms by chlorine dioxide. International Journal of Food Microbiology, 131(2–3), 138–144. https://doi.org/10.1016/j.ijfoodmicro.2009.02.004
Venkitanarayanan, K. S., Lin, C. -M., Bailey, H., & Doyle, M. P. (2002). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes by lactic acid with hydrogen peroxide. Journal of Food Protection, 65(1), 100–105. https://doi.org/10.4315/0362-028x-65.1.100
Weng, S., Luo, Y., Li, J., Zhou, B., Jacangelo, J. G., & Schwab, K. J. (2016). Assessment and speciation of chlorine demand in fresh-cut produce wash water. Food Control, 60, 543–551. https://doi.org/10.1016/j.foodcont.2015.08.031
Yang, X., Yan, R., Chen, Q., & Fu, M. (2020). Analysis of flavor and taste attributes differences treated by chemical preservatives: a case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. Journal of Food Science and Technology, 57, 4371–4382. https://doi.org/10.1007/s13197-020-04474-7
Yoon, J. -H., & Lee, S. -Y. (2018). Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Critical Reviews in Food Science and Nutrition, 58(18), 3189–3208. https://doi.org/10.1080/10408398.2017.1354813
Zhang, L. A. (2013). Removal of chlorine residual in tap water by boiling or adding ascorbic acid. International Journal of Engineering Research and Applications, 3(5), 1647–1651. https://www.ijera.com/papers/Vol3_issue5/JN3516471651.pdf
Zoellner, C., Aguayo-Acosta, A., Wasim Siddiqui, M., & Dávila-Aviña, J. E. (2018). Chapter 2- Peracetic acid in disinfection of fruits and vegetables. In M. Wasim Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (pp. 53–66). Academic Press. https://doi.org/10.1016/B978-0-12-812698-1.00002-9
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Esteban Fatjó-Barboza, Gabriela Davidovich-Young, Eric Wong-González
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).