Compatibilidad Quitosano-Bradyrhizobium aplicados a semillas y su efecto en el desarrollo vegetativo de soya (Glycine max (L.) Merrill)

Autores/as

  • Daimy Costales-Menéndez Instituto Nacional de Ciencias Agrícolas (INCA), Dpto. de Fisiología y Bioquímica Vegetal, San José de las Lajas, Mayabeque, Cuba http://orcid.org/0000-0003-0121-6287
  • Maria Caridad Naápoles-García Instituto Nacional de Ciencias Agrícolas (INCA), Dpto. de Fisiología y Bioquímica Vegetal, San José de las Lajas, Mayabeque, Cuba http://orcid.org/0000-0003-1413-1717
  • Lisbel Travieso-Hernández Instituto Nacional de Ciencias Agrícolas (INCA), Dpto. de Fisiología y Bioquímica Vegetal, San José de las Lajas, Mayabeque, Cuba http://orcid.org/0000-0002-0312-6915
  • Omar Cartaya-Rubio Instituto Nacional de Ciencias Agrícolas (INCA), Dpto. de Fisiología y Bioquímica Vegetal, San José de las Lajas, Mayabeque, Cuba http://orcid.org/0000-0001-7436-0437
  • Alejandro Bernardo Falcón-Rodríguez Instituto Nacional de Ciencias Agrícolas (INCA), Dpto. de Fisiología y Bioquímica Vegetal, San José de las Lajas, Mayabeque, Cuba http://orcid.org/0000-0002-6499-1902

DOI:

https://doi.org/10.15517/am.v32i3.44020

Palabras clave:

bioestimulantes, crecimiento vegetativo, nitrato reductasa, nutrientes, metabilito secundario

Resumen

Introducción. El quitosano y las rizobacterias promotoras del crecimiento vegetal son reconocidos bioestimulantes agrícolas por los beneficios biológicos que aportan a las plantas. Objetivo. Evaluar la aplicación conjunta de concentraciones de quitosano y el inoculante Azofert-S® sobre semillas de soya, en la supervivencia de Bradyrhizobium elkanii y el desarrollo vegetativo de las plantas. Materiales y métodos. La investigación se desarrolló en el cuarto de crecimiento de plantas del Departamento de Fisiología y Bioquímica Vegetal del Instituto Nacional de Ciencias Agrícolas de Cuba, en el año 2016. Se determinó el efecto del quitosano y el inoculante Azofert-S® aplicados a semillas de soya, en el número de bacterias viables en las semillas y en el comportamiento de indicadores morfoagronómicos y fisio-bioquímicos relacionados con la nodulación y el desarrollo vegetativo de las plantas. Resultados. Las concentraciones de quitosano evaluadas en el ensayo de compatibilidad no afectaron el número de células viables en las semillas, excepto 500 y 1000 mg l-1, que mejoraron la supervivencia de la bacteria al comienzo del ensayo y 500 mg l-1 a los diez días de almacenamiento de las semillas. Esta última concentración benefició también la longitud radical y del tallo, el área foliar y la actividad enzimática de la nitrato reductasa en hojas. La aplicación combinada de Azofert® - quitosano y la sola inoculación de las semillas incrementó la concentración de nitrógeno y otros nutrientes en nódulos y trifoliolos. La concentración de flavonoides y de fenoles totales aumentó con la concentración de 10 mg l-1 de quitosano, aunque redujo la concentración de carbohidratos solubles totales y reductores en las hojas. Conclusión. Los bioestimulantes resultaron compatibles cuando se aplicaron sobre semillas en el momento de la siembra y beneficiaron la nodulación, la nutrición y el desarrollo vegetativo de las plantas de soya, en dependencia de la concentración del polímero.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aftab, A., Asghari, B., & Mussarat, F. (2010). Higher soybean yield by inoculation with N-fixing and P-solubilizing bacteria. Agronomy for Sustainable Development, 30, 487–495. https://doi.org/10.1051/agro/2009041

Agbodjato, N. A., Noumavo, P. A., Adjanohoun, A., Agbessi, L., & Baba-Moussa, L. (2016). Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize (Zea mays L.). Biotechnology Research International, 2016, Article 7830182. https://doi.org/10.1155/2016/7830182

Badawy, M. E. I., & Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, Article 460381. https://doi.org/10.1155/2011/460381

Bellaloui, N. (2012). Soybean seed phenol, lignin, and isoflavones partitioning as affected by seed node position and genotype differences. Food and Nutrition Sciences, 3(4), 447–454. https://doi.org/10.4236/fns.2012.34064

Blondel, A. M., & Blanc, D. (1975). Mise au point dúne methode de mesure in vivo de la activité de la nitrate reductase. Annals of Agronomy, 26, 309–322.

Costales, D., Falcón-Rodríguez, A. B., Nápoles, M. C., De-Winter, J., Gerbaux, P., Onderwater, R. C. A., Wattiez, R., & Cabrera, J. C. (2016). Effect of chitosaccharides in nodulation and growth in vitro of inoculated soybean. American Journal of Plant Sciences, 7(9), 1380–1391. https://doi.org/10.4236/ajps.2016.79131

Costales-Menéndez, D., Falcón-Rodríguez, A. B., & Travieso-Hernández, L. (2020). Efecto de la masa molecular de quitosanos en la germinación y el crecimiento in vitro de soya. Cultivos Tropicales, 41(1), Artículo e05.

De-paiva-kérsul, P.A., Rodríguez-Torres, J. L., Orioli-Junior, V., de-Oliveira-Charlo, H. C., Menezes-de-Souza, Z., & Miranda-Lemes, E. (2019). Agronomic performance of soybean inoculated and coinoculated with diazotrophic bacteria. Asian Academic Research Journal of Multidisciplinary, 6(5), 1–13.

Hemantaranjan, A., Deepmala, K., Singh, B., & Nishant, A. (2014). A future perspective in crop protection: Chitosan and its oligosaccharides. Advances Plants & Agriculture Research, 1(1), 23-30. https://doi.org/10.15406/apar.2014.01.00006

Fioreze, S. L., Tochetto, C., Coelho, A. E., & Melo, H. F. (2018). Effects of calcium supply on soybean plants. Comunicata Scientiae, 9(2), 219–225. https://doi.org/10.14295/CS.v9i2.1792

Gajula, D., Verghese, M., Boateng, J., Walker, L. T., Shackelford, L., Mentreddy, S. R., & Cedric, S. (2009). Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). International Journal of Cancer Research, 5(4), 130–143. https://doi.org/ 10.3923/ijcr.2009.130.143

Gao, X., Zhang, S., Zhao, X., & Wu, Q. (2018). Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLOS ONE, 13(7), Article e0200903. https://doi.org/10.1371/journal.pone.0200903

Hernández, J. A., Pérez, J. M., Bosch, I. D., & Castro, S. N. (2015). Clasificación de los suelos de Cuba. Ediciones INCA.

Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313–326. https://doi.org/10.1007/s12298-018-0633-1

Hu, Z., & Gänzle, M. G. (2018). Challenges and opportunities related to the use of chitosan as a food preservative. Journal of Applied Microbiology, 126, 1318–1331. https://doi.org/10.1111/jam.14131

Hungria, M., Nogueira, M. A., Motta Campos, L. J., Menna, P., Brandi, F., & Guerrero Ramos, Y. (2020). Seed pre-inoculation with Bradyrhizobium as time- optimizing option for large-scale soybean cropping systems. Agronomy Journal, 112(6), 5222–5236. https://doi.org/10.1002/agj2.20392

Hussain, I., Ahmad, S., Ullah, I., Basit, A., Ahmad, I., Sajid, M., & Ayaz, S. (2019). Foliar application of Chitosan modulates the morphological and biochemical characteristics of tomato. Asian Journal of Agriculture and Biology, 7(3), 365–372. https://www.asianjab.com/wp-content/uploads/2019/10/5.-AJAB-2018-04-132_Okay.pdf

Kumar, S., Ye, F., Dobretsov, S., & Dutta, J. (2019). Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Applied Sciences, 9(12), Article 2409. https://doi.org/10.3390/app9122409

Lodeiro, A. (2015). Interrogantes en la tecnología de la inoculación de semillas de soja con Bradyrhizobium spp. Revista Argentina de Microbiología, 47(3), 261–273. http://doi.org/10.1016/j.ram.2015.06.006

Martínez, F., García, C., Gómez, L. A., Aguilar, Y., Martínez-Viera, R., Castellanos, N., & Riverol, M. (2017). Manejo sostenible de suelos en la agricultura cubana. Agroecología, 12(1), 25–38.

Mohamed, S. A., Ahmed, H. S., & El-Baowab, A. A. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Egyptian Journal of Horticulture, 45(2), 257–273. https://doi.org/10.21608/ejoh.2018.3063.1050

Mondal, M. M. A., Malek, M. A., Puteh, A. B., & Ismail, M. R. (2013). Foliar application of chitosan on growth and yield attributes of mugbean (Vigna radiate (L.) Wilczek). Bangladesh Journal of Botany, 42, 179–183. https://doi.org/10.3329/bjb.v42i1.15910

Moretti, L. G., Lazarini, E., Bossolani, J. W., Parente, T. L., Caioni, S., Araujo, R. S., & Hungria, M. (2018). Can additional inoculations increase soybean nodulation and grain yield? Agronomy Journal, 110(2), 715–721. https://doi.org/10.2134/agronj2017.09.0540

Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Fundamentals and applications of chitosan. In G. Crini & E. Lichtfouse (eds.), Sustainable Agriculture Reviews 35 (pp. 338). Springer International. https://doi.org/10.1007/978-3-030-16538-32

Mukhtar-Ahmed, K. B., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydrate Polymers, 227, Article 115331. https://doi.org/10.1016/j.carbpol.2019.115331

Muleta, D., Ryder, M. H., & Denton, M. (2017). The potential for rhizobial inoculation to increase soybean grain yields on acid soils in Ethiopia. Soil Science and Plant Nutrition, 63(5), 441–451. https://doi.org/10.1080/00380768.2017.1370961

Nápoles, M. C. (Inventor). (2002, diciembre). Medio de cultivo para Bradyrhizobium japonicum. Biopreparado resultante (Patente de Cuba 2279). Ministerio de Comercio.

Nápoles, M.C., Gómez, G., Costales, D., Freixas, J. A., Guevara, E., Meira, S., González-Anta, G., & Ferreira, A. (2011). Signals in soybeans inoculants, soybean-biochemistry, chemistry and physiology. In N. Tzi-Bun (Ed.), Soybean- biochemistry, chemistry and physiology (pp. 323–344). InTechOpen. https://doi.org/10.5772/14882

Oniani, O. G., Chater, M., & Mattingly, G. E. G. (1973). Some effects of fertilizers and farmyard manure on the organic phosphorus in soils. Journal of Soil Science, 24(1), 1–9.

O´Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applications Microbiology Biotechnology, 100, 5729–5746. http://doi.org/10.1007/s00253-016-7590-9

Paneque-Pérez, V. M, Calaña-Naranjo, J. M., Calderón-Valdés, M., Borges-Benítez, Y., Hernández-García, T. C., & Caruncho-Contreras, M. (2010). Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. Ediciones INCA.

Pérez-Pizá, M. C., Cejas, E., Zilli, C., Prevosto, L., Mancinelli, B., Santa-Cruz, D., Yannarelli, G., & Balestrasse, K. (2020). Enhancement of soybean nodulation by seed treatment with non–thermal plasmas. Scientific Reports, 10, Article 4917. https://doi.org/10.1038/s41598-020-61913-3

Pommeresche, R., & Hansen, S. (2017). Examining root nodule activity on legumes (FertilCrop: Technical note) (pp. 1–4). Research Institute of Organic Agriculture FiBL, & Norwegian Centre for Organic Agriculture. http://www.fertilcrop.net

Ponce, M., de-la-Fé, C., Ortiz, R., & Moya, C. (2006). INCAsoy-24 e INCAsoy-27: Nuevas variedades de soya para las condiciones climáticas de Cuba. Cultivos Tropicales, 24(3), 49. https://www.redalyc.org/pdf/1932/193218163007.pdf

Prvulović, D., Malenčić, D., & Miladinović, J. (2016). Antioxidant activity and phenolic content of soybean seeds extracts. Agro - Knowledge Journal, 17(2), 121–132. https://doi.org/10.7251/AGREN1602121P

Ramakrishna, R., Sarkar, D., Manduri, A., Iyer, S. G., & Shetty, K. (2017). Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy. Journal of Food Science and Technology, 54(11), 3666–3678. https://doi.org/10.1007/s13197-017-2828-9

Ritchey, E. L., Lee, C., Knot, C. A., & Grove, J. H. (2014). Soybean nutrient management in Kentucky. Agriculture and Natural Resources Publications. https://uknowledge.uky.edu/anr_reports/136

Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers Plant Sciences, 11, Article 40. https://doi.org/10.3389/fpls.2020.00040

Sahariah, P., & Másson, M. (2017). Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules, 18(11), 3846–3868. https://doi.org/10.1021/acs.biomac.7b01058

Salachna, P., Grzeszczuk, M., & Soból, M. (2017). Effects of chitooligosaccharide coating combined with selected ionic polymers on the stimulation of Ornithogalum saundersiae. Growth Molecules, 22, Article 1903. https://doi.org/10.3390/molecules22111903

Sanches-Santos, M., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: rreviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9, Article 205. https://doi.org/10.1186/s13568-019-0932-0

Sharif, R., Mujtaba, M., Ur Rahman, M., Shalmani, A., Ahmad, H., Anwar, T., & Wang, X. (2018). The Multifunctional role of chitosan in horticultural crops: A review. Molecules, 23(4), Article 872. https://doi.org/10.3390/molecules23040872

Silva, L. R., Bento, C., Goncalves, C., Flores-Félix, J. D., Ramírez-Bahena, M. H., Peix, A., & Velázquez, E. (2017). Legume bioactive compounds: Influence of rhizobial inoculation. AIMS Microbiology, 3(2), 267–278. https://doi.org/10.3934/microbiol.2017.2.267

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://www.ajevonline.org/content/16/3/144

Smith, D. S., Gravel, V., & Yergeau, E. (2017). Signaling in the Phytomicrobiome. Frontiers Media. https://doi.org/10.3389/978-2-88945-216-3

Somogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195, 19–23. https://www.jbc.org/content/195/1/19.full.pdf

Supapvanich, S., Chimsoontorn, V., Anan, W., Boonyaritthongchai, P., Tepsorn, R., & Techavuthiporn, C. (2018). Effect of preharvest chitosan application on bioactive compounds of and sunflower sprouts during storage. International Journal of Agricultural Technology, 14(7), 1987–1998. http://www.ijat-aatsea.com/pdf/v14_n7_2018_%20December/91_IJAT_14(7)_2018_Supapvanich,%20S..pdf

Tamagno, S., Sadras, V. O., Haegele, J. W., Armstrong, P. R., & Ciampitti, I. A. (2018). Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: Implications on seed yield and biomass allocation. Scientific Reports, 8, Article 17502. https://doi.org/10.1038/s41598-018-35672-1

Taiza-Locateli, B., Preus da Cruz, M., Locatelli Dalacosta, N., Fuschter Oligine, K., Bertoldo, E., & Favetti, C. I. (2019). Elicitor-induced defense response in soybean plants challenged by Bemisia tabaci. Journal of Agricultural Science, 11(2), 251–262. https://doi.org/10.5539/jas.v11n2p251

Vargas, L. I., Minchiotti, M. C., Muñoz, J. O., & Madoery, R. R. (2014). Chitosan biopolymer and oligomer derivative as elicitors for resistance induction against pathogens in soybean (Glycine max). Journal of Chitin and Chitosan Science, 2(16), Article 1071. https://doi.org/10.1166/jcc.2014.1071

Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publishers.

Walkley, A.J. & Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37(1), 29-38.

Weisany, W., Raei, Y. & Allahverdipoor, K. H. (2013). Role of some of mineral nutrients in biological nitrogen fixation. Bulletin of Environment, Pharmacology and Life Sciences, 2(4), 77–84. https://www.researchgate.net/publication/262198129

Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35(2), 569–588. https://doi.org/10.1007/s13593-014-0252-3

Yemm, E. & Willis, A. J. (1954). The estimation of carbohydrate in plant extracts by Anthrone. Biochemical Journal, 57(3), 508–514. https://doi.org/10.1042/bj0570508

Yin, H., Du, Y. & Dong, Z. (2016). Chitin oligosaccharide and chitosan oligosaccharide: Two similar but different plant elicitors. Frontiers in Plant Science, 7, Article 522. https://doi.org/10.3389/fpls.2016.00522

Zeng, D., Luo, X. & Tu, R. (2012). Application of bioactive coatings based on chitosan for soybean seed protection. International Journal of Carbohydrate Chemistry, 2012, Article 104565. https://doi.org/10.1155/2012/104565

Zhang, X., Li, K., Xing, R., Liu, S. & Li, P. (2017). Metabolite profiling of wheat seedlings induced by chitosan: Revelation of the enhanced carbon and nitrogen metabolism. Frontiers Plant Science, 8, Article 2017. https://doi.org/10.3389/fpls.2017.02017

Publicado

2021-09-01

Cómo citar

Costales-Menéndez, D., Naápoles-García, M. C., Travieso-Hernández, L., Cartaya-Rubio, O., & Falcón-Rodríguez, A. B. (2021). Compatibilidad Quitosano-Bradyrhizobium aplicados a semillas y su efecto en el desarrollo vegetativo de soya (Glycine max (L.) Merrill). Agronomía Mesoamericana, 32(3), 869–887. https://doi.org/10.15517/am.v32i3.44020

Artículos más leídos del mismo autor/a