Comportamiento de líneas mesoamericanas de frijol (Phaseolus vulgaris L.) en un oxisol no fertilizado

Autores/as

DOI:

https://doi.org/10.15517/am.v32i3.44498

Palabras clave:

fitomejoramiento, fertilidad del suelo, fijación simbiótica de nitrógeno, Rhizobium, discriminación de isótopos de carbono

Resumen

Introducción. El frijol común (Phaseolus vulgaris L.) en América Central y el Caribe a menudo se produce en suelos de baja fertilidad que reduce el rendimiento del cultivo. Los programas de mejoramiento de frijoles necesitan identificar genotipos que tengan una adaptación superior a estas condiciones. Objetivo. Identificar líneas de germoplasma de frijol mesoamericano con una adaptación superior a la baja fertilidad del suelo. Materiales y métodos. El comportamiento de veintisiete líneas de frijol mesoamericano (Phaseolus vulgaris L.) del Vivero de Adaptación de Frijol a Estreses Abióticos (BASE 120), fue evaluado en un oxisol sin fertilizante químico en Isabela, Puerto Rico, durante cinco épocas de siembra (periodo de cuatro años de 2015-2018). Las líneas se inocularon con una mezcla de Rhizobium etli y R. tropici para promover la fijación simbiótica de nitrógeno (SNF). Resultados. Cuatro líneas produjeron rendimientos promedios de semilla >1200 kg ha-1 y presentaron estimaciones de nitrógeno derivado de la atmósfera (NDFA) >50 %. El mayor número de nódulos se correlacionó positivamente con % NDFA, días a la madurez y rendimiento de semilla. El cultivar rojo pequeño tolerante al calor y la sequía ‘Rojo Chortí’ y el cultivar blanco ‘Verano’ tolerante al calor, presentaron los valores de discriminación de isótopos de C más bajos que sugieren una mayor eficiencia en el uso del agua. El daño por pudrición de la raíz fue mínimo y los ángulos de crecimiento basal de la raíz fueron intermedios (40-60 %), lo que favoreció la absorción de agua y nutrientes del suelo en las líneas élites del ensayo. Conclusión. Se identificaron líneas de frijol mesoamericanas con un rendimiento superior y una mejor fijación simbiótica de nitrógeno en un suelo de baja fertilidad. Algunas líneas también poseen resistencias a otros factores bióticos y abióticos que limitan el rendimiento de semilla de frijol en Centroamérica y el Caribe.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abrahão, S. A., de Assis de Carvalho Pinto, F., Marçal de Queiroz, D., Terra Santos, N., & Eustáquio de Souza Carneiro, J. (2013). Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices. Revista Ciência Agronômica, 44(3), 464–473. https://doi.org/10.1590/S1806-66902013000300007

Akter, Z., Pageni, B. B., Lupwayi, N. Z., & Balasubramanian, P. M. (2018). Biological nitrogen fixation by irrigated dry bean (Phaseolus vulgaris L.) genotypes. Canadian Journal of Plant Science, 98(5), 1159–1167. https://doi.org/10.1139/cjps-2017-0301

Beaver, J. S., Estévez De Jensen, C., Lorenzo-Vázquez, G., González, A., Martínez, H., & Porch, T. G. (2018a). Registration of ‘Bella’ white-seeded common bean cultivar. Journal of Plant Registrations, 12(2), 190–193. https://doi.org/10.3198/jpr2017.05.0029crc

Beaver, J. S., Estévez de Jensen, C., Ruiz-Quiles, L., Vázquez, G., González, A., Martínez, H., & Porch, T. G. (2018b). Release of ‘Hermosa’ black bean cultivar. Journal of Agriculture of the University of Puerto Rico, 102(1–2), 123–128. https://doi.org/10.46429/jaupr.v102i1-2.17540

Beaver, J. S., Godoy-Lutz, G., Steadman, J. R., & Porch, T. G. (2011). Release of ‘Beníquez’ white bean (Phaseolus vulgaris L.) cultivar. Journal of Agriculture of the University of Puerto Rico, 95(3), 237–240. https://doi.org/10.46429/jaupr.v95i3-4.2579

Beaver, J. S., Porch, T. G., & Zapata, M. (2008). Registration of ‘Verano’ white bean. Journal of Plant Registrations, 2(3), 187–189. https://doi.org/10.3198/jpr2008.02.0110crc

Beaver, J. S., Prophete, E. H., Rosas, J. C., Godoy Lutz, G., Steadman, J. R., & Porch, T. G. (2014). Release of ’XRAV-40-4’ black bean (Phaseolus vulgaris L.) cultivar. Journal of Agriculture of the University of Puerto Rico, 98(1), 83–87. https://doi.org/10.46429/jaupr.v98i1.224

Beaver, J. S., Rosas, J. C., Myers, J., Acosta, J., Kelly, J. D., Nchimbi-Msolla, S., Misangu, R., Bokosi, J., Temple, S., Arnaud-Santana, E., & Coyne, D. P. (2003). Contributions of the Bean/Cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Research, 82, 87–102. https://doi.org/10.1016/S0378-4290(03)00032-7

Beebe, S., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, Article 35. https://doi.org/10.3389/fphys.2013.00035

Beebe, S. E., Rao, I. M., Cajiao, C., & Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48(2), 582–592. https://doi.org/10.2135/cropsci2007.07.0404

Beebe, S. E., Rao, I. M., Mukankusi, C., & Buruchara, R. A. (2012). Improving resource use efficiency and reducing risk of common bean production in Africa, Latin America, and the Caribbean. In C. H. Hershey (Ed.), Eco-Efficiency: From vision to reality (pp. 117–134). Centro Internacional de Agricultura Tropical (CIAT).

Bliss, F. A. (1993). Breeding common bean for improved biological. Plant and Soil, 152, 71–79. https://doi.org/10.1007/978-94-011-2100-2_6

Centro Nacional de Tecnología Agropecuaria y Forestal. (2005). CENTA Pipil variedad de frijol rojo resistente al virus de mosaico dorado amarillo y tolerante al calor [Boletín Técnico]. Ministerio de Agricultura y Ganadería.

Chaves-Barrantes. N. F. (2015). Uso de recombinantes de Phaseolus vulgaris L., P. coccineus L. y P. acutifolius A. Gray para mejorar la tolerancia del frijol común a diferentes tipos de estrés abiótico [Tesis de Doctorado, no publicada]. Universidad Nacional de Colombia.

Chaves-Barrantes, N. F., Polanía, J. A., Muñoz-Perea, C. G., Rao, I. M., & Beebe, S. E. (2018). Caracterización fenotípica por resistencia a sequía terminal de germoplasma de frijol común. Agronomía Mesoamericana, 29(1), 1–17. https://doi.org/10.15517/ma.v29i1.27618

Davis, J. G., & Brick, M. A. (2009). Fertilizing dry beans (Fact Sheet No. 0.539). Colorado State University Extension. https://extension.colostate.edu/docs/pubs/crops/00539.pdf

Devi, M. J., Sinclair, T. R., Beebe, S. E., & Rao, I. M. (2013). Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant and Soil, 364, 29–37. https://doi.org/10.1007/s11104-012-1330-4

Dorcinvil, R., Sotomayor-Ramírez, D., & Beaver, J. S. (2010). Agronomic performance of common bean (Phaseolus vulgaris L.) lines in an Oxisol. Field Crops Res, 118(3), 264–272. https://doi.org/10.1016/j.fcr.2010.06.003

Elisondo-Barron, J., Pasini, R. J., Davis, D. W., Stuthman, D. D., & Graham, P. H. (1999). Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris L.). Field Crops Research, 62(2-3), 119–128. https://doi.org/10.1016/S0378-4290(99)00009-X

Food and Agriculture Organization. (2019). Crops/2017/Dry beans/Yield/Dominican Republic, Haiti, Guatemala, El Salvador, Honduras and Nicaragua. http://www.fao.org/faostat/en/#data/QC

Farquhar, G. D., Ehleringer, R., & Hubic, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–37. https://doi.org/10.1146/annurev.pp.40.060189.002443

Farid, M., Earl, H. J., Pauls, K. P., & Navabi, A. (2017). Response to selection for improved nitrogen fixation in common bean (Phaseolus vulgaris L.). Euphytica, 213(4), 99–111. https://doi.org/10.1007/s10681-017-1885-5

Farid, M., & Navabi, A. (2015). N2 fixation ability of different dry bean genotypes. Canadian Journal of Plant Science, 95(6), 1243–1257. https://doi.org/10.4141/cjps-2015-084

Fenta, B. A., Beebe, S. E., & Kunert, K. J. (2020). Role of fixing nitrogen in common bean growth under water deficit conditions. Food Energy Security, 9, Article e183. https://doi.org/10.1002/fes3.183

Fernández-Toledo, F., Beaver, J. S., & Schroder, E. (1997). Nodulation and seed yield of common bean in moderate and high temperature environments. Department of Agronomy and Soils, University of Puerto Rico. https://naldc.nal.usda.gov/download/IND20600830/PDF

Graham, P. H., Rosas, J. C. Estevez de Jensen, C., Peralta, E., Tlusty, B., Acosta-Gallegos, J., & Arraes Pereira, P. A. (2003). Addressing edaphic constraints to bean production: The Bean/Cowpea CRSP project in perspective. Field Crops Research, 82(2–3), 179–192. https://doi.org/10.1016/S0378-4290(03)00037-6

Granadino-Espinal, M. A., & León-Gonzalez, O. H. (2016). Evaluación de frijol común (Phaseolus vulgaris L.) por su tolerancia a suelos de baja fertilidad (Tesis de Licenciatura, Escuela Agrícola Panamericana). Repositorio del Zamorano. http://bdigital.zamorano.edu/bitstream/11036/5851/1/CPA-2016-T055.pdf

Gutiérrez-Rodríguez, M., Escalante-Estrada, J. A., Rodriguez Gonzalez, M. T., & Reynolds, M. P. (2006). Canopy reflectance indices and its relationship with yield in common bean plants (Phaseolus vulgaris L.) with phosphorous supply. International Journal of Agriculture & Biology, 8(2), 203-207.

Heilig, J. A, Beaver, J. S., Wright, E. M., Song, Q., & Kelly, J. D. (2017). QTL analysis of symbiotic nitrogen fixation in a black bean population. Crop Science, 57(1), 118–129. https://doi.org/10.2135/cropsci2016.05.0348

Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil, 311, 1–18. https://doi.org/10.1007/s11104-008-9668-3

Instituto de Ciencia y Tecnología Agrícolas. (2010). Nuevas variedades de frijol ICTA Petén e ICTA Sayaxché [Brochure]. Instituto de Ciencia y Tecnología Agrícolas. http://arsftfbean.uprm.edu/bean/wp-content/uploads/2020/02/ICTA-Peten-ACM-e-ICTA-Sayaxche_Nuevas-variedades-de-frijol-para-el-Peten-2010.pdf

Kamfwa, K., Cichy, K. A., & Kelly, J. D. (2015). Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theoretical and Applied Genetics, 128(10), 1999–2017. https://doi.org/10.1007/s00122-015-2562-5

Liao, H., Rubio, G., Yan, X., Cao, A., Brown, K. M., & Lynch, J. P. (2001). Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil, 232(2–3), 69–79. https://doi.org/10.1023/A:1010381919003

McClean, P. E., Burridge, J. Beebe, S. Rao, I. M., & Porch, T. G. (2011). Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris L.). Functional Plant Biology, 38, 927–933. https://doi.org/10.1071/FP11102

Miklas, P. N., Kelly, J. D., Beebe, S. E., & Blair, M. W. (2006). Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica, 147, 105–131. https://doi.org/10.1007/s10681-006-4600-5

National Centers for Environmental Information. (2020). Comparative climatic data. https://www.ncdc.noaa.gov/ghcn/comparative-climatic-data

Oladzad, A., Porch, T. G., Rosas, J. C., Mafi Moghaddam, S., Beaver, J. S., Beebe, S. E., Burridgw, J., Nhaguapana, C., Amade, M., Miklas, P. N., Ratz, B., White, J. W., Lynch, J., & McClean, P. E. (2019). Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. Genes | Genomes | Genetics (G3), 9(6), 1881–1892. https://doi.org/10.1534/g3.119.400072

Oldroyd, G. E. D., & Leyser, O. (2020). A plant’s diet, surviving in a variable nutrient environment. Science, 368(6486), Article eaba0196. https://doi.org/10.1126/science.aba0196

Parada-Cardona, J. R., Ventura-Elías, R., Clará, A., & Bruno, O. (2015). ‘CENTA EAC’ variedad de frijol color rojo claro [Brochure]. Nacional de Tecnología Agropecuaria y Forestal (CENTA). http://arsftfbean.uprm.edu/bean/wp-content/uploads/2020/02/CENTA-EAC-nueva-variedad-de-frijol-rojo-claro-2015.pdf

Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., Boddey, R. M., Dakora, F. D., Bhattarai, S., Maskey, S. L., Sampet, C., Rerkasem, B., Khan, D. F., Hauggaard-Nilsen, H., & Jensen, E. S. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 48, 1–17. https://doi.org/10.1007/BF03179980

Pereira, P. A. A., & Bliss, F. A. (1987). Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil, 104, 79–84. https://doi.org/10.1007/BF02370628

Pereira, P. A. A., Miranda, B. D., Attewell, J. R., Kmiecik, K. M., & Bliss, F. A. (1993). Selection for increased nodule number in common bean (Phaseolus vulgaris L.). Plant and Soil, 148, 203-209. https://doi.org/10.1007/BF00012858

Polania, J. A., Poschenrieder, C., Beebe, S., & Rao, I. M. (2016a). Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Frontiers in Plant Science, 7, Article 660. https://doi.org/10.3389/fpls.2016.00660

Polania, J., Poschenrieder, C., Rao, I. M., & Beebe, S. (2016b). Estimation of phenotypic variability in symbiotic nitrogen fixation ability of common bean under drought stress using 15N natural abundance in grain. European Journal of Agronomy, 79, 66-73. https://doi.org/10.1016/j.eja.2016.05.014

Porch, T. G., Beaver, J. S., Abawi, G., Estévez de Jensen, C., & Smith, J. R. (2014). Registration of a small-red dry bean germplasm, TARS LFR1, with multiple disease resistance and superior performance in low nitrogen soils. Journal of Plant Registrations, 8(2), 177–182. https://doi.org/10.3198/jpr2013.03.0015crg

Porch, T. G., Urrea, C. A., Beaver, J. S., Valentin, S., Peña and P. A., & Smith, J. R. (2012). Registration of TARS-MST1 and SB-DT1 multiple stress-tolerant black bean germplasm. Journal of Plant Registrations, 6(1), 75–80. https://doi.org/10.3198/jpr2010.08.0501crg

Rosas, J. C. (2011). Contribuciones del programa de investigaciones en frijol en Centro América y El Caribe. CEIBA, 52(1), 65-73. https://doi.org/10.5377/ceiba.v52i1.967

Rosas, J. C. (2015). Paraisito Mejorado 2 (PM2- Don Rey) [Brochure]. Escuela Agrícola Panamericana. http://www.programafpma.com/PDF/variedades/honduras/06PM2DonRey.pdf

Rosas, J. C., Beaver, J. S., Escoto, D., Perez, C. A., Llano, A., Hernández, J. C., & Araya, R. (2004). Registration of ‘Amadeus 77’ small red common bean. Crop Science, 44, 1867–1868. https://doi.org/10.2135/CROPSCI2004.1867

Rosas, J.C., Castro, A., & Flores, E. (2000). Mejoramiento genético del frijol rojo y negro Mesoamericano para Centroamérica y el Caribe. Agronomía Mesoamericana, 11(2), 37–46. https://doi.org/10.15517/am.v11i2.17305

Rosas, J. C., Escoto, D., & Meza, N. (2016). Propuesta de liberación de las variedades de frijol de grano negro ‘Azabache 40’ y ‘Lenca precoz’. Comité Nacional de Liberación de Variedades e Híbridos Vegetales, Dirección de Ciencia y Tecnología Agropecuaria (DICTA). http://dicta.gob.hn/files/Frijol-2016-011.pdf

Rosas, J. C., Rodriguez, I. Y., Escoto, N. D., & Meza, N. (2019). Propuesta de liberación de la variedad de frijol “Rojo Chortí”. Dirección de Ciencia y Tecnología Agropecuaria (DICTA). http://dicta.gob.hn/files/Frijol-2016-012.pdf

Sanz-Saez, A., Maw, M. J. W., Polania, J. A., Rao, I. M., Beebe, S. E., & Fritschi, F. B. (2019). Using carbon isotope discrimination to assess genotypic differences in drought resistance of parental lines of common bean. Crop Science, 59(5), 2153–2166. https://doi.org/10.2135/cropsci2019.02.0085

Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B., & Chalk, P. (2008). Measuring plant-associated nitrogen fixation in agricultural systems (ACIAR Monograph Series 136). Australian Centre for International Agricultural Research (ACIAR). https://aciar.gov.au/publication/books-and-manuals/measuring-plant-associated-nitrogen-fixation-agricultural-systems

van Schoonhoven, A., & Pastor-Corrales, M. A. (1987). Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT).

Villar-Sánchez, B., López-Salinas, E., Tosquy-Valle, O. H., & Cruz-Chávez, F. J. (2010). Rojo INIFAP, Nueva variedad de frijol de grano rojo para el trópico de México. Revista Mexicana de Ciencias Agrícolas, 1(5), 681-686. http://www.scielo.org.mx/pdf/remexca/v1n5/v1n5a6.pdf

Wilker, J., Navabi, A., Rajcan, I., Marsolais, F., Hill, B., Torkamaneh, D., & Peter Pauls, K. (2019). Agronomic performance and nitrogen fixation of heirloom and conventional dry bean varieties under low-nitrogen field conditions. Frontiers in Plant Science, 10, Article 952. https://doi.org/10.3389/fpls.2019.00952.

Zhao, J., Fu, J., Liao, H., He, Y., Nian, H., Hu, Y., Qiu, L., Dong, Y., & Yan, X. (2004). Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chinese Science Bulletin, 49, 1611–1620. https://doi.org/10.1007/BF03184131

Publicado

2021-09-01

Cómo citar

Beaver, J. S., González-Vélez, A., Lorenzo-Vázquez, G., Macchiavelli, R., Porch, T. G., & Estevez-de-Jensen, C. (2021). Comportamiento de líneas mesoamericanas de frijol (Phaseolus vulgaris L.) en un oxisol no fertilizado. Agronomía Mesoamericana, 32(3), 701–718. https://doi.org/10.15517/am.v32i3.44498