Crecimiento y absorción de nutrimentos del cultivo de pitahaya (Hylocereus costaricensis y H. monocanthus) de Costa Rica
DOI:
https://doi.org/10.15517/am.2024.57493Palabras clave:
manejo de nutrientes, nutrición de las plantas, modelos determinísticos, producción de biomasaResumen
Introducción. El cultivo de pitahaya (Hylocereus costaricensis y H. monocanthus) está en aumento en Costa Rica, pero carece de información técnica para su manejo, como necesidades nutricionales, momentos de fertilización y comportamiento del crecimiento. Objetivo. Cuantificar y modelar el crecimiento y la absorción de nutrimentos del cultivo de pitahaya (H. costaricensis y H. monocanthus) en condiciones del trópico estacional seco de Costa Rica. Materiales y métodos. La investigación se realizó durante los años 2017–2020, en Guanacaste, Costa Rica. Se muestrearon plantas a los 76, 165, 308, 450, 607, 903, 1249 y 1706 días después de siembra (DDS) y 205 frutas. Se cuantificó la materia seca y se calculó la absorción de N, P, Ca, Mg, K, S, Fe, Cu, Zn, Mn y B. Se ajustaron dos modelos logísticos para determinar la absorción de nutrientes y se calibraron regresiones lineales en fruta fresca. Resultados. Para una densidad de siembra de 3000 planta/ha los requerimientos nutricionales del cultivo por hectárea fueron: 137 kg N, 32 kg P, 327 kg K, 63 kg Mg, 32 kg S, 1,60 kg Zn y 0,21 kg B. El modelo logístico de mejor ajuste (RMSE = 0,09) estimó de forma precisa la absorción de N, P, Ca, S, Zn y B. El modelo de regresión lineal tuvo alta capacidad predictora (R2 > 0,85) para los requerimientos de N, P, K, Mg y S en fruta. Conclusión. Los modelos logísticos tuvieron alta precisión para modelar de manera determinística la absorción de nutrientes en plantas de pitahaya. Además, se logró cuantificar y modelar de forma eficiente el comportamiento nutricional de las plantas en condiciones de trópico estacional seco de Costa Rica, lo que proporciona información esencial para los programas de fertilización del cultivo.
Descargas
Citas
Amato Moreira, R., Monteiro da Cruz, M. do C., Ramalho Fernandes, D., de Barros e Silva, E., & de Oliveira, J. (2016). Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization. Pesquisa Agropecuária Tropical, 46(3), 230–237. https://doi.org/10.1590/1983-40632016v4640813
Arredondo, E., Chiamolera, F. M., Casas, M., & Cuevas, J. (2022). Comparing different methods for pruning pitaya (Hylocereus undatus). Horticulturae, 8(7), Article 661. https://doi.org/10.3390/horticulturae8070661
Auzanneau, J., Huyghe, C., Escobar-Gutiérrez, A. J., Julier, B., Gastal, F., & Barre, P. (2011). Association study between the gibberellic acid insensitive gene and leaf length in a Lolium perenne L. synthetic variety. BMC Plant Biology, 11(1), Article 183. https://doi.org/10.1186/1471-2229-11-183
Bertsch, F. (2009). Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia de Suelos.
Botella, M. Á., Arévalo, L., Mestre, T. C., Rubio, F., García-Sánchez, F., Rivero, R. M., & Martínez, V. (2017). Potassium fertilization enhances pepper fruit quality. Journal of Plant Nutrition, 40(2), 145–155. https://doi.org/10.1080/01904167.2016.1201501
Cabalceta, G., & Molina, E. (2006). Niveles críticos de nutrimentos en suelos de Costa Rica utilizando la solución extractora Mehlich 3. Agronomía Costarricense, 30(2), 31–44. https://doi.org/10.15517/rac.v30i2.6808
Campos Granados, M. F. (2022). Análisis del crecimiento, desarrollo y maduración de frutos de pitahaya roja Hylocereus spp. [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica. https://repositorio.sibdi.ucr.ac.cr/handle/123456789/19435
Carranza, C., Lanchero, O., Miranda, D., & Chaves, B. (2009). Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá. Agronomía Colombiana, 27(1), 41–48. https://revistas.unal.edu.co/index.php/agrocol/article/view/11330
Chu, Y.-C., & Chang, J.-C. (2020). High temperature suppresses fruit/seed set and weight, and cladode regreening in red-fleshed ‘Da Hong’ pitaya (Hylocereus polyrhizus) under controlled conditions. HortScience, 55(8), 1259–1264. https://doi.org/10.21273/HORTSCI15018-20
Corres Antonio, D. (2006). Efecto del fertirriego en la propagación sexual y asexual de la pitahaya (Hylocereus undatus) bajo cultivo sin suelo [Tesis de maestría, Instituto Politécnico Nacional]. Repositorio del Instituto Politecnico Nacional de Oxalaca. http://literatura.ciidiroaxaca.ipn.mx:8080/xmlui/handle/LITER_CIIDIROAX/19
de Castro Lima, D., Barbosa Mendes, N. V., de Madeiros Corrêa, M. C., Kenji Taniguchi, C. A., Fernandes Queiroz, R., & Natale, W. (2019). Growth and nutrient accumulation in the aerial part of red Pitaya (Hylocereus sp.). Revista Brasileira de Fruticultura, 41(5), Article e-030. https://doi.org/10.1590/0100-29452019030
de Castro Lima, D., Basrbosa Mendes, N. V., Saldanha Diógenes, M. F., de Madeiros Corrêa, M. C., Natale, W., & Kenji Taniguchi, C. A. (2021). Initial growth and nutrient accumulation in pitaya plants at different phenological stages. Revista Caatinga, 34(3), 720–727. https://doi.org/10.1590/1983-21252021v34n324rc
Esquivel, P., & Araya Quesada, Y. (2012). Características del fruto de la pitahaya (Hylocereus sp.) y su potencial de uso en la industria alimentaria. Revista Venezolana de Ciencia y Tecnología de Alimentos, 3(1), 113–129. https://sites.google.com/site/1rvcta/v3-n1-2012/r7?pli=1
Esquivel, P., Stintzing, F.C., & Carle, R. (2007). Comparison of morphological and chemical fuit traits from different pitahya genotypes (Hylocereus sp.) grown in Costa Rica. Journal of Applied Botany and Food Quality, 81(1), 7–14. https://ojs.openagrar.de/index.php/JABFQ/article/view/2103
Fairhurst, T., & Härdter, R. (2012). Palma aceitera. Manejo para rendimientos altos y sostenibles. International Plan Nutrition Institute and International Potash Institute.
Feller, C., Favre, P., Janka, A., Zeeman, S. C., Gabriel, J.-P., & Reinhardt, D. (2015). Mathematical modeling of the dynamics of shoot-root interactions and resource partitioning in plant growth. PLOS ONE, 10(7), Article e0127905. https://doi.org/10.1371/journal.pone.0127905
Fontanetti Rodrigues, M. G., Arruda Ferreira, A. F., da Silva Malagutti, E., dos Santos Pinto, M., Honorato Monteiro, L. N., & Esutáquio de Sá, M. (2021). Cladode size and collection time for pitahaya propagation. Ciência e Agrotecnologia, 45, Articulo e004821. https://doi.org/10.1590/1413-7054202145004821
Gabriel y Galán, J. M., Prada, C., Martínez-Calvo, C., & Lahoz-Beltrá, R. (2015). A Gompertz regression model for fern spores germination. Anales Del Jardín Botánico de Madrid, 72(1), Article e015. https://doi.org/10.3989/ajbm.2405
Gajanayake, B., Reddy, R. K., & Shankle, M. W. (2015). Quantifying Growth and Developmental Responses of Sweetpotato to Mid- and Late-Season Temperature. Agronomy Journal, 107(5), 1854–1862. https://doi.org/10.2134/agronj14.0545
Ganeshamurthy, A., Kalaivanan, D., Selvakumar, G., & Panneerselvam, P. (2015). Nutrient management in horticultural crops. Indian Journal of Horticulture, 11(12), 30–42.
Garbanzo-León, G., Chavarría-Pérez, G., & Vega-Villalobos, E. V. (2019). Correlaciones alométricas en Hylocereus costaricensis y H. monocanthus (pitahaya): una herramienta para cuantificar el crecimiento. Agronomía Mesoamericana, 30(2), 425–436. https://doi.org/10.15517/am.v30i2.33574
Garbanzo-León, G., Vega-Villalobos, E. V., Rodríguez-Cisneros, J., Urbina-Briceño, C., Lázaro-Rojas, W., Alvarado-Jara, K., Barrientos-Bolaños, R., Duarte-Ortíz, K., Mora-Prendas, J., Trujillo-Olivas, V., & Rojas-Varela, J. (2021). Evaluación de tamaño de cladodios y bio-estimulantes de enraizamiento para la propagación de pitahaya. Agronomía Costarricense, 45(2), 29–40. https://doi.org/10.15517/rac.v45i2.47765
García Barquero, M. E., & Quirós Madrigal, O. (2010). Analisis del comportamiento de mercado de la pitahaya (Hylocereus undatus). Tecnología en Marcha, 23(2), 14–24. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/62/61
García y García, A., Dourado-Neto, D., del Valle Basanta, M., López Ovejero, R. F., & Laércio Favarin, J. (2003). Logistic rice model for dry matter and nutrient uptake. Scientia Agricola, 60(3), 481–488. https://doi.org/10.1590/S0103-90162003000300011
Génard, M., & Huguet, J. G. (1996). Modeling the response of peach fruit growth to water stress. Tree Physiology, 16(4), 407–415. https://doi.org/10.1093/treephys/16.4.407
Gur, A., Osorio, S., Fridman, E., Fernie, A. R., & Zamir, D. (2010). hi2-1, A QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theoretical and Applied Genetics, 121(8), 1587–1599. https://doi.org/10.1007/s00122-010-1412-8
Hau, B. (1993). Mathematical functions to describe disease progress curves of double sigmoid pattern. Phytopathology, 83(7), Article 928. https://doi.org/10.1094/Phyto-83-928
Hernández-Ramos, L., García-Mateos, M. del R., Castillo González, A. M., Ybarra Moncada, C., & Nieto-Ángel, R. (2020). Fruits of the pitahaya Hylocereus undatus and H. ocamponis: nutritional components and antioxidants. Journal of Applied Botany and Food Quality, 93, 197–203. https://doi.org/10.5073/JABFQ.2020.093.024
Hunt, H. (1979). Plant growth analysis: The rationale behind the use of the fitted mathematical function. Annals of Botany, 43, 245–249. https://www.jstor.org/stable/42756459
Johnston, A. M., & Bruulsema, T. W. (2014). 4R Nutrient stewardship for improved nutrient use efficiency. Procedia Engineering, 83, 365–370. https://doi.org/10.1016/j.proeng.2014.09.029
Kalcsits, L., Lotze, E., Tagliavini, M., Hannam, K. D., Mimmo, T., Neilsen, D., Neilsen, G., Atkinson, D., Casagrande Biasuz, E., Borruso, L., Cesco, S., Fallahi, E., Pii, Y., & Valverdi, N. A. (2020). Recent achievements and new research opportunities for optimizing macronutrient availability, acquisition, and distribution for perennial fruit crops. Agronomy, 10(11), Article 1738. https://doi.org/10.3390/agronomy10111738
Kawano, T., Wallbridge, N., & Plummer, C. (2020). Logistic models for simulating the growth of plants by defining the maximum plant size as the limit of information flow. Plant Signaling & Behavior, 15(2), Article 1709718. https://doi.org/10.1080/15592324.2019.1709718
Le Bellec, F., Vaillant, F., & Imbert, E. (2006). Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits, 61(4), 237–250. https://doi.org/10.1051/fruits:2006021
Li, W., Yang, M., Wang, J., Wang, Z., Fan, Z., Kang, F., Wang, Y., Luo, Y., Kuang, D., Chen, Z., Guo, C., Li, Y., He, X., Chen, X., Shi, X., & Zhang, Y. (2019). Agronomic Responses of major fruit crops to fertilization in China: A meta-analysis. Agronomy, 10(1), Article 15. https://doi.org/10.3390/agronomy10010015
Lim, C. A. A., Awan, T. H., Sta. Cruz, P. C., & Chauhan, B. S. (2015). Influence of environmental factors, cultural practices, and herbicide application on seed germination and emergence ecology of Ischaemum rugosum Salisb. PLOS ONE, 10(9), Article e0137256. https://doi.org/10.1371/journal.pone.0137256
Lipovetsky, S. (2010). Double logistic curve in regression modeling. Journal of Applied Statistics, 37(11), 1785–1793. https://doi.org/10.1080/02664760903093633
López-Turcios, O., & Guido-Miranda, A. (1998). Evaluación de dosis de nitrógeno y fósforo en el cultivo de pitahaya (Hylocereus undatus). Agronomía Mesoamericana, 9(1), 66–71. https://doi.org/10.15517/am.v9i1.24635
Lucena Cavalcante, Í. H., Geraldo Martins, A. B., da Silva Júnior, G. B., Fonseca da Rocha, L., Falcão Neto, R., & Ferreira Cavalcante, L. (2011). Adubação orgânica e intensidade luminosa no crescimento e desenvolvimento inicial da Pitaya em Bom Jesus-PI. Revista Brasileira de Fruticultura, 33(3), 970–983. https://doi.org/10.1590/S0100-29452011005000086
Luu, T.-T.-H., Le, T.-L., Huynh, N., & Quintela-Alonso, P. (2021). Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech Journal of Food Sciences, 39(2), 71–94. https://doi.org/10.17221/139/2020-CJFS
Mizrahi, Y. (2014). Vine-cacti pitayas: the new crops of the world. Revista Brasileira de Fruticultura, 36(1), 124–138. https://doi.org/10.1590/0100-2945-452/13
Montanaro, G., Dichio, B., Xiloyannis, C., & Celano, G. (2006). Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Science, 170(3), 520–527. https://doi.org/10.1016/j.plantsci.2005.10.004
Morales-Ayala, Y., Ceja-Torres, L., Méndez-Inocencio, C., Silva-García, T., Venegas-González, J., & Pineda-Pineda, J. (2020). Respuesta vegetativa de pitahaya (Hylocereus spp.) a la aplicación de vermicompost y fertirriego. Tropical and Subtropical Agroecosystems, 23(3), Article 90. http://dx.doi.org/10.56369/tsaes.2923
Moreira, R. A., Cruz, M. C. M., Fernandes, D. R., Silva, E. B., Oliveira, J. (2016). Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization. Pesquisa Agropecuária Tropical, 46(3), 230–237. https://doi.org/10.1590/1983-40632016v4640813
Moustakas, N. K., Akoumianakis, K. A., & Passam, H. C. (2011). Patterns of dry biomass accumulation and nutrient uptake by okra (Abelmoschus esculentus (L.) Moench.) under different rates of nitrogen application. Australian Journal of Crop Science, 5(8), 993–1000. http://www.cropj.com/Moustakas_5_8_2011_993_1000.pdf
Nofriandi, I., Barchia, F., Fahrurrozi, F., Simanihuruk, B. W., & Sukarjo, E. I. (2021). Stem Cutting Growth of Red Dragon Fruit (Hylocereus costaricensis) due to Aplication of Cow Manure and KCl in Andosol. TERRA : Journal of Land Restoration, 4(2), 48–52. https://doi.org/10.31186/terra.4.2.48-52
Orrico Zalazar, G. (2013). Respuesta de la pitahaya amarilla (Cereus triangularis L.) a la aplicación complementaria de dos fertilizantes en tres dosis [Tesis de licenciatura, Universidad Central del Ecuador]. Repositorio Institucional de la Universidad Central del Ecuador. http://www.dspace.uce.edu.ec/handle/25000/1041
Ortiz-Hernández, Y. D., & Carrillo-Salazar, J. A. (2012). Pitahaya (Hylocereus spp.): a short review. Comunicata Scientiae, 3(4), 220–237. https://comunicatascientiae.com.br/comunicata/article/view/334
Overman, A. R., Scholtz, R. V., & Martin, F. G. (2003). In defense of the extended logistic model of crop production. Communications in Soil Science and Plant Analysis, 34(5–6), 851–864. https://doi.org/10.1081/CSS-120018979
Paramasivam, S., Alva, A. K., Hostler, K. H., Easterwood, G. W., & Southwell, J. S. (2000). Fruit nutrient accumulation of four orange varieties during fruit development 1. Journal of Plant Nutrition, 23(3), 313–327. https://doi.org/10.1080/01904160009382018
Qiu, R., Du, T., Kang, S., Chen, R., & Wu, L. (2015). Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China. Agricultural Systems, 138, 1–9. https://doi.org/10.1016/j.agsy.2015.05.001
R Core Team. (2022). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Retana-Sánchez, K., Blanco-Meneses, M., & Castro-Zúñiga, O. (2018). Etiología del cáncer del tallo provocado por Neoscytalidiumdimidiatum (penz) en Hylocereus costaricensis, en Costa Rica. Agronomía Costarricense, 43(1), 21–33. https://doi.org/10.15517/rac.v43i1.35646
Rodríguez, W., & Leihner, D. (2006). Análisis del crecimiento vegetal. Universidad de Costa Rica.
Sepaskhah, A. R., Fahandezh-Saadi, S., & Zand-Parsa, S. (2011). Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management, 99(1), 51–57. https://doi.org/10.1016/j.agwat.2011.07.019
Shabani, A., Sepaskhah, A. R., & Kamgar-Haghighi, A. A. (2014). Estimation of yield and dry matter of rapeseed using logistic model under water salinity and deficit irrigation. Archives of Agronomy and Soil Science, 60(7), 951–969. https://doi.org/10.1080/03650340.2013.858807
Shabani, A., Sepaskhah, A. R., Kamgar-Haghighi, A. A., & Honar, T. (2018). Using double logistic equation to describe the growth of winter rapeseed. The Journal of Agricultural Science, 156(1), 37–45. https://doi.org/10.1017/S0021859617000934
Silber, A., Naor, A., Cohen, H., Bar-Noy, Y., Yechieli, N., Levi, M., Noy, M., Peres, M., Duari, D., Narkis, K., & Assouline, S. (2018). Avocado fertilization: Matching the periodic demand for nutrients. Scientia Horticulturae, 241, 231–240. https://doi.org/10.1016/j.scienta.2018.06.094
Soltani, A., & Sinclair, T. R. (Eds.). (2012). Modeling physiology of crop development, growth and yield. CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845939700.0000
Srivastava, A. K., & Malhotra, S. K. (2017). Nutrient use efficiency in perennial fruit crops—A review. Journal of Plant Nutrition, 40(13), 1928–1953. https://doi.org/10.1080/01904167.2016.1249798
Tarara, J. M., Blom, P. E., Shafii, B., Price, W. J., & Olmstead, M. A. (2009). Modeling Seasonal Dynamics of Canopy and Fruit Growth in Grapevine for Application in Trellis Tension Monitoring. HortScience, 44(2), 334–340. https://doi.org/10.21273/HORTSCI.44.2.334
Vega Villalobos, E., & Musmanni Quintana, M. (2005). Recoleccion, reproduccion t adaptacion de frutales no tradicionales y exoticos del tropico seco de Costa Rica [Informe proyecto, VI-520-96-329.]. Universidad de Costa Rica. https://vinv.ucr.ac.cr/sigpro/web/projects/96329
Viñas, M., Fernández-Brenes, M., Azofeifa, A., & Jiménez, V. M. (2012). In vitro propagation of purple pitahaya (Hylocereus costaricensis [F.A.C. Weber] Britton & Rose) cv. Cebra. In Vitro Cellular & Developmental Biology - Plant, 48, 469–477. https://doi.org/10.1007/s11627-012-9439-y
Wang, Z.-H., Li, S.-X., & Malhi, S. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture, 88(1), 7–23. https://doi.org/10.1002/jsfa.3084
Xiangxiang, W., Quanjiu, W., Jun, F., Lijun, S., & Xinlei, S. (2014). Logistic model analysis of winter wheat growth on China’s Loess Plateau. Canadian Journal of Plant Science, 94(8), 1471–1479. https://doi.org/10.4141/cjps2013-293
Zerpa-Catanho, D., Hernández-Pridybailo, A., Madrigal-Ortiz, V., Zúñiga-Centeno, A., Porras-Martínez, C., Jiménez, V. M., & Barboza-Barquero, L. (2019) Seed germination of pitaya (Hylocereus spp.) as affected by seed extraction method, storage, germination conditions, germination assessment approach and water potential. Journal of Crop Improvement, 33(3), 372–394. https://doi.org/10.1080/15427528.2019.1604457
Zhang, W.-P., Liu, G.-C., Sun, J.-H., Fornara, D., Zhang, L.-Z., Zhang, F.-F., & Li, L. (2017). Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 31(2), 469–479. https://doi.org/10.1111/1365-2435.12732
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Gabriel Garbanzo-León, Jorge Claudio Vargas-Rojas, Edgar Vidal Vega-Villalobos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).