Bactris guineensis, un fruto de palma costarricense subutilizado: procesamiento del jugo y su perfil nutricional

Autores/as

DOI:

https://doi.org/10.15517/am.2024.60173

Palabras clave:

compuestos bioactivos, tratamiento térmico, compuestos fenólicos, Arecaceae

Resumen

Introducción. Bactris guineensis es un cultivo que produce frutos atractivos, similares a uvas de color negro-púrpura,

Introducción. Bactris guineensis es un cultivo que produce frutos atractivos, similares a uvas de color negro-púrpura, con semillas redondas. Esta especie de palma prospera naturalmente en las regiones bajas de América tropical. Sin embargo, existe poca información disponible sobre este fruto. Objetivo. Investigar la composición nutricional, el contenido de compuestos bioactivos, la capacidad antioxidante y el perfil de aroma del fruto huiscoyol cultivado en Costa Rica, así como evaluar los efectos del procesamiento del jugo (maceración enzimática y tratamiento térmico) sobre sus compuestos bioactivos y capacidad antioxidante. Materiales y métodos. Los frutos se recolectaron de palmas y racimos seleccionados aleatoriamente en el Área de Conservación Guanacaste, durante los años de cosecha pico (2007, 2011, 2014 y 2016). Se analizaron la composición nutricional, el contenido de compuestos bioactivos, la capacidad antioxidante y los perfiles de aromas y polifenoles. Los jugos se prepararon mediante tratamiento térmico, maceración enzimática y una combinación de ambos métodos. El contenido de compuestos bioactivos y la capacidad antioxidante se evaluaron después de cada tratamiento. Resultados. El fruto de huiscoyol presentó un alto contenido de fibra [7,3 ± 2,5 g por 100 g de peso fresco (pf)] y un contenido significativo de potasio (307 ± 98 mg por 100 g pf. Los niveles de antocianinas variaron entre 28,3 y 47,9 mg por 100 g pf, con cianidina-3-O-rutinósido como compuesto predominante. El contenido total de polifenoles osciló entre 219 y 1013 mg de equivalentes de ácido gálico por 100 g pf. El contenido máximo de vitamina C fue de 48 mg por 100 g pf. La capacidad antioxidante, medida por H-ORAC, varió entre 6690 y 14 688 μmol de equivalentes de Trolox por 100 g pf. Los tratamientos de maceración enzimática y térmicos aplicados al jugo no afectaron significativamente el contenido de compuestos bioactivos ni la actividad antioxidante (p > 0,05). Conclusión. El fruto de huiscoyol demostró un potencial nutricional y antioxidante, lo que lo convierte en un ingrediente prometedor para bebidas funcionales. Sus componentes bioactivos, como los polifenoles y las antocianinas, mostraron una notable estabilidad frente al procesamiento térmico y enzimático.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abouelenein, D., Acquaticci, L., Alessandroni, L., Borsetta, G., Caprioli, G., Mannozzi, C., Marconi, R., Piatti, D., Santanatoglia, A., Sagratini, G., Vittori, S., & Mustafa, A. M. (2023). Volatile profile of strawberry fruits and influence of different drying methods on their aroma and flavor: a review. Molecules, 28(15), Article 5810. https://doi.org/10.3390/molecules28155810

Association of Official Analytical Chemists. (2023). Official methods of analysis of AOAC International (22nd ed.). Association of Official Analytical Chemists.

Bagnarello, V., Borbón, H., Calvo, M., Trimiño, H., & Alpizar-Cordero, J. (2014). Isolation and chemical characterization of two new anthocyanin pigments from güiscoyol (Bactris guineensis) fruit. European Journal of Scientific Research, 127(4), 369–381. http://www.europeanjournalofscientificresearch.com

Baker, M. T., Lu, P., Parrella, J. A., & Leggette, H. R. (2022). Consumer acceptance toward functional foods: a scoping review. International Journal of Environmental Research and Public Health, 19(3), Article 1217. https://doi.org/10.3390/ijerph19031217

Brieva-Oviedo, E., Campos D Maia, A. & Nuñez-Avellaneda, L. A. (2020). Pollination of Bactris guineensis (Arecaceae), a potential economically exploitable fruit palm from the Colombian Caribbean. Flora, 269, Article 151628. https://doi.org/10.1016/j.flora.2020.151628

Carpena, M., Fraga-Corral, M., Otero, P., Nogueira, R. A., García-Oliveira, P., Prieto, M. A., & Simal-Gandara, J. (2021). Secondary aroma: influence of wine microorganisms on its aromatic profile. Foods, 10(1), Article 51. https://doi.org/10.3390/foods10010051

Carpenter, D. E., Ngeh-Ngwainbi, J., & Lee, S. (1993). Lipid analysis. In D. M. Sullivan, & D. E. Carpenter (Eds.), Methods of analysis for nutrition labeling (pp. 85-104). AOAC International.

Castañeda-Sánchez, A., & Guerrero-Beltrán, J. A. (2015). Pigmentos en frutas y hortalizas rojas: antocianinas. Temas Selectos de Ingeniería de Alimentos, 9, 25–33. https://contexto.udlap.mx/tsia-vol-9-no-1-ene-may-2015/

Chízmar Fernández, C. (Ed.) (2009). Plantas comestibles de Centroamérica (1ª ed.). Instituto Nacional de Biodiversidad.

Culleré, L., Escudero, A., Cacho, J., & Ferreira, V. (2004) Gas chromatography−olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. Journal of Agricultural and Food Chemistry, 52(6), 1653–1660. https://doi.org/10.1021/jf0350820

De Freitas Ferreira, D., Dos Santos Garruti, D., Smaniato Barin, J., Cichoski, A. J., & Wagner, R. (2016). Characterization of odor-active compounds in gabiroba fruits (Campomanesia xanthocarpa O. Berg). Journal of Food Quality, 39(2), 90–97. https://doi.org/10.1111/jfq.12177

Diaz-Uribe, C., Vallejo, W. A., Romero, E., Villareal, M., Padilla, M., Hazbun, N., Muñoz-Acevedo, A., Schott, E., & Zarate, X. (2020). TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT study. Journal of Saudi Chemical Society, 24(5), 407–416. https://doi.org/10.1016/j.jscs.2020.03.004

Dreher, M. L. (2018). Whole fruits and fruit fiber emerging health effects. Nutrients, 10(12), Article 1833. https://doi.org/10.3390/nu10121833

Erşan, S., Berning, J. C., Esquivel, P., Jiménez, V. M., Carle, R., May, B., Schweiggert, R. & Steingass, C. B. (2020). Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis, 94, Article 103611. https://doi.org/10.1016/j.jfca.2020.103611

Fenech, M., Amaya, I., Valpuesta, V., & Botella, M. A. (2019). Vitamin C content in fruits: Biosynthesis and regulation. Frontiers in Plant Science, 9, Article 2006. https://doi.org/10.3389/fpls.2018.02006

Feszterová, M., Mišiaková, M., & Kowalska, M. (2023). Bioactive vitamin C content from natural selected fruit juices. Applied Sciences., 13(6), Article 3624. https://doi.org/10.3390/app13063624

Georgé, S., Brat, P., Alter, P., & Amiot, M. (2005). Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and Food Chemistry, 53(5), 1370–1373. https://doi.org/10.1021/jf048396b

Guler, A. (2023) Effects of different maceration techniques on the colour, polyphenols and antioxidant capacity of grape juice. Food Chemistry, 404, Article 134603. https://doi.org/10.1016/j.foodchem.2022.134603

Hernández, Y., Lobo, M. G., & González, M. (2006). Determination of vitamin C in tropical fruits: a comparative evaluation of methods. Food Chemistry, 96(4), 654–664. https://doi.org/10.1016/j.foodchem.2005.04.012

Herazo, I. C., Ruiz, D., & Arrázola, G. S. (2011). Utilización de Candida guilliermondii aislada del corozo chiquito (Bactris guineensis) en la producción de xilitol. Revista Colombiana de Biotecnología, 13(1), 52–57. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/22937/38227

Högnadóttir, Á., & Rouseff, R. L. (2003). Identification of aroma active compounds in orange essence oil using gas chromatography–olfactometry and gas chromatography–mass spectrometry. Journal of Chromatography A, 998(1-2), 201–211. https://doi.org/10.1016/S0021-9673(03)00524-7

Huang, D., Ou, B., Hampsch-Woodill, H., Flanagan, J. A., & Prior R. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444. https://doi.org/10.1021/jf0201529

Jaimes-Gualdrón, T., Flórez-Álvarez, L., Zapata-Cardona, M. I., Rojano, B. A., Rugeles, M. T., & Zapata-Builes, W. (2022). Corozo (Bactris guineensis) fruit extract has antiviral activity in vitro against SARS-CoV-2. Functional Foods in Health and Disease, 12(9), 534–546. https://doi.org/10.31989/ffhd.v12i9.918

Koley, T. K., Khan Z., Oulkar, D., Singh, B. K., Maurya, A., Singh, B., & Banerjee, K. (2020). High resolution LC-MS characterization of phenolic compounds and the evaluation of antioxidant properties of a tropical purple radish genotype. Arabian Journal of Chemistry, 13(1), 1355–1366. https://doi.org/10.1016/j.arabjc.2017.11.007

López, S., Martá, M., Sequeda, L. G., Celis, C., Sutachan, J. J., & Albarracín, S. L. (2017). Cytoprotective action against oxidative stress in astrocytes and neurons by Bactris guineensis (L.) H.E. Moore (corozo) fruit extracts. Food Chemistry and Toxicology, 109, 1010–1017. http://doi.org/10.1016/j.fct.2017.04.025

Lykkesfeldt, J. (2000). Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris [2-carboxyethyl] phosphine hydrochloride. Analytical Biochemistry, 282(1), 89–93. https://doi.org/10.1006/abio.2000.4592

Matute, A., Tabart, J., Cheramy-Bien, J. P., Kevers, C., Dommes, J., Defraigne, J. O., & Pincemail, J. (2021). Ex vivo antioxidant capacities of fruit and vegetable juices. Potential in vivo extrapolation. Antioxidants, 10(5), Article 770. https://doi.org/10.3390/antiox10050770

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic R. (2012). Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science, 77(10), C1064–C1070. https://doi.org/10.1111/j.1750-3841.2012.02896.x

Montero, M. L., Rojas-Garbanzo, C., Usaga, J., & Pérez, A. M. (2022). Composición nutricional, contenido de compuestos bioactivos y capacidad antioxidante hidrofílica de frutas costarricenses seleccionadas. Agronomía Mesoamericana, 33(2), Article 46175. https://doi.org/10.15517/am.v33i2.46175

Moyer, R. A., Hummer, K. E., Finn, C. E., Frei, B., & Wrolstad, R. E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry, 50(3), 519–525. https://doi.org/10.1021/jf011062r

Nayak, B., Liu, R., & Tang, J. (2015). Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—A Review. Critical Reviews in Food Science and Nutrition, 55(7), 887–918. https://doi.org/10.1080/10408398.2011.654142

Nighojkar, A., Patidar, M., & Nighojkar, S. (2019). 8 - Pectinases: Production and applications for fruit juice beverages. Processing and Sustainability of Beverages, 2, 235–273. https://doi.org/10.1016/B978-0-12-815259-1.00008-2

Olsen, H., Aaby, K., & Borge, G. (2009). Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. Journal of Agricultural and Food Chemistry, 57(7), 2816–2825. https://doi.org/10.1021/jf803693t

Osorio, C., Acevedo, B., Hillebrand, S., Carriazo, J., Winterhalter, P., & Morales A. L. (2010). Microencapsulation by spray-drying of anthocyanin pigments from Corozo (Bactris guineensis) fruit. Journal of Agricultural and Food Chemistry, 58(11), 6977–6985. https://doi.org/10.1021/jf100536g

Osorio, C., Carriazo J., & Almanza, O. (2011). Antioxidant activity of corozo (Bactris guineensis) fruit by electronparamagnetic resonance (EPR) spectroscopy. European Food Research and Technology, 233, 103–108. https://doi.org/10.1007/s00217-011-1499-4

Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626. https://doi.org/10.1021/jf010586

Padilla, B., Gil, J. V., & Manzanares, P. (2016). Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology, 7, Article 411. https://doi.org/10.3389/fmicb.2016.00411

Petruzzi, L., Campaniello, D., Speranza, B., Corbo M. R., Sinigaglia, M., & Bevilacqua, A. (2017) Thermal treatments for fruit and vegetable juices and beverages: A literature overview. Comprehensive Reviews in Food Science and Food Safety, 16(4), 668–691. https://doi.org/10.1111/1541-4337.12270

Quesada, M. S., Azofeifa, G., Campone, L., Pagano, I., Pérez, A. M., Cortés, C., Rastrelli, L., & Quesada, S. (2020). Bactris guineensis (Arecaceae) extract: polyphenol characterization, antioxidant capacity and cytotoxicity against cancer cell lines. Journal of Berry Research, 10(3), 329–344. https://doi.org/10.3233/JBR190449

Rojano, B., Zapata, I. C., & Cortes, F. B. (2012). Estabilidad de antocianinas y valores de capacidad de absorbancia de radicales oxígenos (ORAC) de extractos acuosos de corozo (Bactris guineensis). Revista Cubana de Plantas Medicinales, 17(3), 244–255. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=35076

Rojas-Garbanzo, C., Pérez, A. M., Vaillant, F., & Pineda-Castro, M. L. (2016). Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes Kunth) fruits in Costa Rica. Brazilian Journal of Food Technology, 19, Article e2015097. https://doi.org/10.1590/1981-6723.9715

Rosa, F., Arruda, A., Siqueira, E., & Arruda, S. (2016). Phytochemical compounds and antioxidant capacity of tucum-do-cerrado (Bactris setosa Mart), Brazil’s Nutrients, 8(3), Article 110. https://doi.org/10.3390/nu8030110

Sequeda-Castañeda, L. G., Barrera-Bugallo, A. R., Celis, C., Iglesias, J., & Morales, L. (2016). Evaluation of antioxidant and cytotoxic activity of extracts from fruits in fibroblastoma HT1080 cell lines: Four fruits with commercial potential in Colombia. Emirates Journal of Food and Agriculture, 28(2), 143–151. https://doi.org/10.9755/ejfa.2015-11-1007

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673

Soto, M., Acosta, O., Vaillant, F., & Pérez, A. (2016). Effects of mechanical and enzymatic pre-treatments on extraction of polyphenols from blackberry fruits. Journal of Food Process Engineering, 39(5), 492–500. https://doi.org/10.1111/jfpe.12240

Sui, X., Dong, X., & Zhou, W. (2014). Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chemistry, 163, 163–170. https://doi.org/10.1016/j.foodchem.2014.04.075

Temple, N. J. (2022). A rational definition for functional foods: a perspective. Frontiers in Nutrition, 9, Article 957516. https://doi.org/10.3389/fnut.2022.957516

Tejedor-Calvo, E., Garcia-Barreda, S., Dambolena, J. S., Pelissero, D., Sánchez, S., Marco, P., & Nouhra, E. (2023), Aromatic profile of black truffle grown in Argentina: Characterization of commercial categories and alterations associated to maturation, harvesting date and orchard management practices. Food Research International, 173, Article 113300. https://doi.org/10.1016/j.foodres.2023.113300

Topolska, K., Florkiewicz, A., & Filipiak-Florkiewicz, A. (2021). Functional food—consumer motivations and expectations. International Journal of Environmental Research and Public Health, 18(10), Article 5327. https://doi.org/10.3390/ijerph18105327

Trouillas, P., Sancho-García, J., De Freitas, V., Gierschner, J., Otyepka, M., & Dangles, O. (2016). Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical Reviews, 116(9), 4937–4982. https://doi.org/10.1021/acs.chemrev.5b00507

Yan, D., Shi, J., Ren, X., Tao, Y., Ma, F., Li, R., Liu, X., & Liu, C. (2020). Insights into the aroma profiles and characteristic aroma of ‘Honeycrisp’ apple (Malus × domestica). Food Chemistry, 327, Article 127074. https://doi.org/10.1016/j.foodchem.2020.127074

Zhu, J., Wang, L., Xiao, Z., & Niu, Y. (2018). Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography-olfactometry (GC-O), odor activity value (OAV), gas chromatography-mass spectrometry (GC-MS) and flame photometric detection (FPD). Food Chemistry, 245, 775–785. https://doi.org/10.1016/j.foodchem.2017.11.112

Publicado

2024-12-06

Cómo citar

Cortés-Herrera, C., Pérez, A. M., & Vaillant, F. (2024). Bactris guineensis, un fruto de palma costarricense subutilizado: procesamiento del jugo y su perfil nutricional. Agronomía Mesoamericana, 35(Especial 1), 60173. https://doi.org/10.15517/am.2024.60173

Artículos más leídos del mismo autor/a