Actualidades Investigativas en Educación ISSN electrónico: 1409-4703

OAI: https://revistas.ucr.ac.cr/index.php/aie/oai
Metacognitive strategies of a group of Brazilian students in mathematical modelling activities
PDF (Português (Brasil))
XML (Português (Brasil))
EPUB (Português (Brasil))

Keywords

mathematical modelling
metacognition
metacognitive strategies
higher education
modelagem matemática
metacognição
estratégias metacognitivas
ensino superior
modelación matemática
metacognición
estrategias metacognitivas
educación superior

How to Cite

Velozo de Castro, Élida M., & Almeida, L. M. W. (2023). Metacognitive strategies of a group of Brazilian students in mathematical modelling activities . Actualidades Investigativas En Educación, 23(1), 1–26. https://doi.org/10.15517/aie.v23i1.51512

Abstract

The article aims to investigate the potential of mathematical modelling to promote metacognitive strategies. The investigation, of a qualitative nature, is based on a theoretical framework and considers data obtained from students of a Mathematics Degree, at a Brazilian university, during the years 2020 and 2021. The results indicate that these strategies are triggered by the demands of the different phases of a modelling activity, that are characterized as: interaction, mathematization, resolution, interpretation and validation; preparation of a report and communication of results. Although metacognition is a personal attribute, it has manifested itself through both individual and collaborative strategies. The activities were carried out in two different moments of familiarization of the students with the modelling and, although there were no differences in the amount, there are indications that in the activity of the third moment strategies emerged that may have contributed more to the performance of the group regarding the competence to do modelling as well as for their mathematical performance. The identification of metacognitive strategies promoted by the demands of the activities leads to the conclusion that in the circumstances in which they were developed, they constitute an example of a metacognitively rich environment.

https://doi.org/10.15517/aie.v23i1.51512
PDF (Português (Brasil))
XML (Português (Brasil))
EPUB (Português (Brasil))

References

Almeida, Lourdes Maria Werle. (2018). Considerations on the use of mathematics in modeling activities. ZDM, 50(1), 19-30.

Almeida, Lourdes Maria Werle., e Brito, Dirceu dos Santos. (2005). Atividades de modelagem matemática: que sentido os alunos podem lhe atribuir? Ciência & Educação (Bauru), 11, 483-497.

Almeida, Lourdes Maria Werle., Castro, Élida Maiara Velozo., e Gomes, Joice Caroline Sander. (2021). Estratégias metacognitivas em atividades de modelagem matemática. Anais do VIII Seminário Internacional de Pesquisa em Educação Matemática (SIPEM) (pp. 2029-2043). Uberlândia, MG, Brasil. https://even3.blob.core.windows.net/anais/ANAIS.217ec246892448a4bead.pdf

Almeida, Lourdes Maria Werle., Castro, Élida Maiara Velozo., e Silva, Maria Helena. (2021). Recursos semióticos em atividades de modelagem matemática e o contexto on-line. Alexandria: Revista de Educação em Ciência e Tecnologia, 14(2), 383-406.

Almeida, Lourdes Maria Werle., e Silva, Karina Alessandra Pessoa. (2021). Ciclo de modelagem matemática interpretado à luz de estratégias heurísticas dos estudantes. Rencima, 12(2), 1-27.

Almeida, Lourdes Maria Werle., Silva, Karina Pessoa., and Vertuan, Rodolfo Eduardo. (2018). Modelagem Matemática na Educação Básica (5ª reimp.). São Paulo: Contexto.

Blum, Werner. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In Sung Je Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education: Intellectual and attitudinal challenges (pp. 73-96). New York, NY: Springer.

Bogdan, Robert., and Biklen, Sari Knopp. (2007). Qualitative research for education: An introduction to theories and methods. Pearson Education.

Bransford, John., Brown, Ann., and Cocking, Rodney. (2000). How people learn (Vol. 11). Washington, DC: National academy press.

Brown, Ann. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In Franz Emanuel Weinert, and Rainer H. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 65–116). Hillsdale, NJ: Lawrence Erlbaum.

De Boer, Hester., Donker, Anouk S., Kostons, Danny D.N.M., and Van der Werf, Greetje P.C. (2018). Long-term effects of metacognitive strategy instruction on student academic performance: A metaanalysis. Educational Research Review, 24, 98–115. https://doi.org/10.1016/j.edurev.2018.03.002

Desoete, Annemie. and De Craene, Brigitte. (2019). Metacognition and mathematics education: an overview. ZDM, 51(4), 565–575. https://doi.org/10.1007/s11858-019-01060-w

Dignath, Charlotte., e Büttner, Gerhard. (2018). Teachers’ direct and indirect promotion of self-regulated learning in primary and secondary school mathematics classes—Insights from video-based classroom observations and teacher interviews. Metacognition and Learning, 13, 127–157. https://doi.org/10.1007/s11409-018-9181-x

Eilerts, Katja., e Kolter, Jana. (2015). Strategieverwendung durch Grundschulkinder bei Modellierungsaufgaben. In Gabriele Kaiser and Hans-Wolfgang Henn (Eds.), Werner Blum und seine Beiträge zum Modellieren im Mathematikunterricht (pp. 119-133). Springer Spektrum, Wiesbaden.

Ferri, Rita Borromeo. (2018). Mathematical Modeling Days and Projects: Go for More. In Rita Borromeo Ferri, Learning How to Teach Mathematical Modeling in School and Teacher Education (pp. 121-133). Springer, Cham.

Flavell, John Henry. (1978). Metacognitive development. In Joseph Scandura and Charles Brainerd (Eds), Structural process theories of complex human behavior (pp. 213-245). The Netherlands: Sijthoff & Noordoffp.

Flavell, John Henry. (1976). Metacognitive aspects of problem solving. In Lauren Resnick (Ed.), The nature of intelligence (pp. 231–236). Hillsdale, NJ: Lawrence Erlbaum.

Garnica, Antonio Vicente Manfioti. (2001). Pesquisa qualitativa e Educação (Matemática): de regulações, regulamentos, tempos e depoimentos. Mimesis, Bauru, 22(1), 35-48.

Harris, Karen., Santangelo, Tanya., and Graham, Steve. (2010). Metacognition and strategy instruction in writing. In Harriet Salatas Waters and Walter Schneider (Eds.), Metacognition, strategy use, and instruction (pp. 226–256). New York: Guilford.

Hidayat, Riyan., Zamri, Sharifah Norul Akmar Syed., Zulnaidia, Hutkemri., and Yuanita, Putri. (2020). Meta-cognitive behaviour and mathematical modelling competency: Mediating effect of performance goals. Heliyon, 6(4), 1-10. https://doi.org/10.1016/j.heliyon.2020.e03800

Hidayat, Riyan., Zulnaidi, Hutkemri., e Zamri, Sharifah Norul Akmar. (2018). Roles of metacognition and achievement goals in mathematical modeling competency: A structural equation modeling analysis. PloS One, 13(11), 1-25. https://doi.org/10.1371/journal.pone.0206211

Jacobs, Janis., e Paris, Scott. (1987). Children's metacognition about reading: Issues in definition, measurement, and instruction. Educational psychologist, 22(3-4), 255-278.

Kaiser, Gabriele., and Brand, Susanne. (2015). Modelling competencies: Past development and further perspectives. In Gloria Stillman, Werner Blum and Maria Salett Biembengut (Eds.), Mathematical Modelling in Education Research and Practice (pp. 129-149). Springer, Cham.

Kim, Young Rae., and Moore, Tamara. (2019). Multiple Levels of Metacognition: Circumstances Interfering with Students' Spontaneous Metacognitive Activities. Journal of Educational Research and Practice, 9(1), 158-178.

Lüdke, Menga., e André, Marli. (1986). Pesquisa em Educação: abordagens qualitativas. São Paulo, EPU.

Maaß, Katja. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik, 31(2), 285-311.

Magiera, Marta., and Zawojewski, Judith. (2019). Principles for Designing Research Settings to Study Spontaneous Metacognitive Activity. In Scott A. Chamberlin and Bharath Sriraman (Eds.). Affect in Mathematical Modeling (pp. 53-66). Springer, Cham.

Mahdavi, Mohsen. (2014). An overview: Metacognition in education. International Journal of Multidisciplinary and current research, 2(may-june), 529-535.

McCormick, Christine. (2003). Metacognition and learning. In William M. Reynolds, Gloria Miller and Irving Weiner (Eds.), Handbook of psychology: Educational psychology (pp. 79–102). Wiley.

Pollak, Henry. (1970). Applications of Mathematics. Teachers College Record, 71(5), 311-334.

Pollak, Henry. (2011). What is mathematical modeling? Journal of Mathematics Education at Teachers College, 2(1), 64.

Rosa, Cleci Werner., e Alves, José Filho de Pinho. (2012). Evocação espontânea do pensamento metacognitivo nas aulas de física: estabelecendo comparações com as situações cotidianas Investigações em Ensino de Ciências, 17(1), 7-19.

Schneider, Wolfgang, e Artelt, Cordula. (2010). Metacognition and mathematics education. ZDM, 42(2), 149-161.

Schraw, Gregory., e Moshman, David. (1995). Metacognitive theories. Educational psychology review, 7(4), 351-371.

Schraw, Gregory. (1998). Promoting general metacognitive awareness. Instructional science, 26, 113-125.

Schukajlow, Stanislau., Kaiser, Gabriele., and Stillman, Gloria. (2018). Empirical research on teaching and learning of mathematical modelling: A survey on the current state-of-the-art. ZDM, 50(1), 5-18.

Stillman, Gloria. (2011). Applying Metacognitive Knowledge and Strategies in Applications and Modelling Tasks at Secondary School. In Gabriele Kaiser, Werner Blum, Rita Borromeo Ferri and Gloria Stillman (Eds), Trends in Teaching and Learning of Mathematical Modelling (ICTMA 14) (pp. 165-180). Dordrecht: Springer.

Vorhölter, Katrin., and Krüger, Alexandra. (2021). Metacognitive strategies in modeling: Comparison of the results achieved with the help of different methods. Quadrante, 30(1), 178-197.

Vorhölter, Katrin., Krüger, Alexandra., and Wendt, Lisa. (2019). Metacognition in mathematical modeling – An overview. In Scott A. Chamberlin and Bharath Sriraman (Eds.), Affect and mathematical modeling (pp. 29-51). Cham: Springer.

Vorhölter, Katrin. (2017). Measuring metacognitive modeling competencies. In Gloria Stillman, Werner Blum and Gabriele Kaiser (Eds.), Mathematical modeling and applications: Crossing and researching boundaries in mathematics education (pp. 175–185). Springer.

Vorhölter, Katrin. (2018). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumptions. ZDM, 50(1), 343-354.

Vorhölter, Katrin. (2019). Enhancing metacognitive group strategies for modelling. ZDM, 51(4), 703-716.

Williams, Joana., and Atkins, Grant. (2009). The role of metacognition in teaching reading comprehension to primary students. In Douglas J. Hacker, John Dunlosky and Arthur C. Graesser (Ed.), Handbook of Metacognition in Education (pp. 26-44). New York: Routledge.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Élida Maiara Velozo de Castro, Lourdes Maria Werle Almeida

Downloads

Download data is not yet available.