Abstract
We study a non-standard form of generating function for the three-parameter continuous dual q-Hahn polynomials pn(x; a, b, c | q), which has surfaced in a recent work of the present authors on the construction of lifting q-difference operators in the Askey scheme of basic hypergeometric polynomials. We show that the resulting generating function identity for the continuous dual q-Hahn polynomials pn(x; a, b, c | q) can be explicitly stated in terms of Jackson’s q-exponential functions eq(z).
References
Wilf, H. (2004) Generatingfunctionology. Cambridge University Press, Cambridge.
Hardy, G. (1999) Ramanujan: Twelwe Lectures on Subjects Suggested by His Life and Work. Chelsea, New York.
Koekoek, R.; Swarttouw, R. (1998) “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue”, Report 98–17, Delft University of Technology, Delft.
Atakishiyeva, M.; Atakishiyev, N. (2010) “On lifting q-difference operators in the Askey scheme of basic hypergeometric polynomials”, J. Phys. A: Math. Theor. 43(14): 145201–145218.
Exton H. (1983) q-Hypergeomteric Functions and Applications. Ellis Horwood, Chichester.
Atakishiyev, N.; Suslov, S. (1992) “Difference Hypergeometric Functions”, in: A. Gonchar & E. Saff (Eds.) Progress in Approximation Theory: An International Perspective, Springer-Verlag, New York, Berlin: 1–35.
Nelson, C.; Gartley, M. (1994) “On the zeros of the q-analogue exponential function”, J. Phys. A: Math. Gen. 27(11): 3857–3881.
Rahman, M. (1995)“The q-exponential functions, old and new”, in: A. Sissakian & G. Pogosyan (Eds.) Proceedings of the International Workshop on Finite Dimensional Integrable Systems, Joint Institute for Nuclear Research, Dubna, Russia: 161–170.
Atakishiyev, N. (1996) “On a one-parameter family of q-exponential functions”, J. Phys. A: Math. Gen. 29(10): L223–L227.
Askey, R.; Wilson, J. (1985) “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials”, Mem. Am. Math. Soc. 54(319): 1–55.
Gasper, G.; Rahman, M. (2004) Basic Hypergeometric Functions. Cambridge University Press, Cambridge.
Andrews, G.; Askey, R.; Roy, R. (1999) Special Functions. Cambridge University Press, Cambridge.
Ismail, M. (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge.
Atakishiyev, N. (1997) “Fourier–Gauss transforms of the Askey–Wilson polynomials”, J. Phys. A: Math. Gen. 30(24): L815–L820.