Abstract
We consider the Schrödinger operator on the unit circle, whose potential is an Ornstein – Uhlenbeck type process, with drift depending on its position. We describe the distribution of the periodic groundstate, based on the circular brownian motion measure. The results exposed here, have been mentioned, but not proved, in [7].
References
Cambronero, S. (1996) The Distribution of the Ground State of Hill’s Equation with Random Potential. Ph.D. Thesis. Courant Institute of Mathematical Sciences. New York University.
McKean, H.; Cambronero, S. (1995) “Valores Propios de Dirichlet asociados a la ecuación de Hill con potencial de ruido blanco”, Revista de Matemática: Teoŕıa y Aplicaciones 2(2): 1–7.
Cambronero, S. (1997) “La ecuación de Hill y el movimiento browniano circular”, V Enc. Centroam.de Invest. en Matemática, Liberia, Universidad de Costa Rica: 133–140.
Cambronero, S. (1996) “La ecuación de Hill con potencial irregular”, Revista de Matemática: Teoría y Aplicaciones 3(1): 25–34.
Cambronero, S. (1997) “Algunos potenciales del tipo Ornstein – Uhlenbeck para el operador de Schrödinger”, Revista de Matemática: Teoría y Aplicaciones 4(1): 61–77.
Itô, K.; Mckean, H.P. (1974) Diffusion Processes and their Sample Paths. 2nd ed. Springer.
McKean, H.P.; Cambronero, S. (1999) “The ground state eigenvalue of Hill’s equation with white noise potential”, Comm. in Pure and Applied Mathematics, LII: 1277–1294.
Fukushima, M.; Nakao, S. (1977) “On spectra of the Schrödinger operator with a white noise potential”, Z. Wahrsch. Verb. Geb. 37: 267–274.
Karatzas, I.; Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus. 2nd ed., Springer.
McKean, H.P. (1994) “A limit law for the ground gtate of Hill’s equation”, J. of Stat. Phys. 74(5/6): 1227–1232.