Abstract
This paper deals with one of the most important public health problem in the whole world that is diabetes, and more precisely its complications. From a model examining the complications or not of a population of diabetics, we associate a nonlinear optimal control problem. Considering the previous, we prove that the equilibrium state exists and is a saddle point. Moreover, we claim the unexistence of limit cycle in such a population, which is an interesting result concerning this world evil. Then we give some examples for which we characterize the equilibrium state which is not necessarily admissible.
References
Bernard, S.; Nuiro, S.P.; Piétrus, A. (2015) “Diabetes, complications and limit cycles”, Applied Mathematics E-Notes 15: 197–206.
Bernard, S.; Piétrus, A. (2015) “Optimal glucose modelling for diabetes”, e-Journal of the Caribbean Academy of Sciences 8(1): 1–8.
Boutayeb, A.; Boutayeb, W.; Lamlili, M. (2014) “Optimal control approach to the dynamics of population of diabetics”, Applied Mathematical Sciences 8(56): 2773–2782.
Boutayeb, A.; Chetouani, A.; Achouyab, A.; Twizell, E.H. (2006) “A non-linear population model of diabetes mellitus”, Journal of Applied Mathematics and Computing 21(1-2): 127–139.
De Gaetano, A.; Hardy, T.; Beck, B.; Abu-Raddad, E.; Palumbo, P.; Bue-Valleskey, J.; Porksen, N. (2008) “Mathematical models of diabetes progression”, American Journal of Physiology, Endocrinology and Metabolism 295(6): E1462–E1479.
Faria, J.R. (2003) “Limit cycles in an optimal control problem of diabetes”, Applied Mathematics Letters 16(1): 127–130.
Feichtinger, G.; Novak, A.; Wirl, F. (1994) “Limit cycles in intertemporal adjustment models: theory and applications”, Journal of Economic Dynamics and Control 18(2): 353–380.
Grass, D.; Caulkins, J.P.; Feichtinger, G.; Tragler, G.; Behrens, D.A. (2008) Optimal Control of Nonlinear Processes, With Applications in Drugs, Corruption, and Terror. Springer-Verlag Berlin Heidelberg, Germany.
Li, J.; Johnson, J. D. (2009) “Mathematical models of subcutaneous injection of insulin analogues: a mini-review”, Discrete and Continuous Dynamical Systems-Series B 12(2): 401–414.
Li, J.; Kuang, Y. (2007) “Analysis of a model of the glucose-insulin regulatory system with two delays”, SIAM Journal on Applied Mathematics 67(3): 757–776.
Makroglou, A.; Li, J.; Kuang, Y. (2006) “Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview”, Applied Numerical Mathematics 56(3-4): 559–573.
Meilûnas, M. (1998) “On the blood glucose dynamics modelling”, Mathematical Modelling and Analysis 3(1): 136–139.
Mukhopadhyay, A.; De Gaetano, A.; Arino, O. (2004) “Modelling the intra-venous glucose tolerance test: a global study for a single-distributed-delay model”, Discrete and Continuous Dynamical Systems. Series B 4(2): 407–417.
Palumbo, P.; Pepe, P.; Panunzi, S.; De Gaetano, A. (2009) “Robust closed-loop control of plasma glycemia: A discrete-delay model approach”, Discrete and Continuous Dynamical Systems. Series B 12(2): 455–468.
Pontryagin, L.; Boltyanski, V.; Gamkrelidze, R.; Michtchenko, E. (1974) Théorie mathématique des processus optimaux. Éditions Mir, Moscou.
Trélat, E. (2008) Contrôle optimal: Théorie et applications. Vuibert, Paris, France.
Wang, H.; Li, J.; Kuang, Y. (2007) “Mathematical modelling and qualitative analysis of insuline therapies”, Mathematical Biosciences 210(1): 17–33.
Wirl, F. (1992) “Cyclical strategies in two-dimensional optimal control models: necessary conditions and existence”, Annals of Operations Research 37(1): 345–356.
Wirl, F. (1996) “Pathways to Hopf bifurcations in dynamic continuous-time optimization problems”, Journal of Optimization Theory and Applications 91(2): 299–320.
Wirl, F.; Feichtinger, G. (2010) “Modelling social dynamics (of obesity) and thresholds”, Games 1(4): 395–414.
Comments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2018 Revista de Matemática: Teoría y Aplicaciones