Resumen
El artículo trata de examinar el llamado equilibrio local de aproximaciones usado cuando se modelan fluidos turbulentos. La dinámica de una estela turbulenta plana es estudiada como un ejemplo. Analizamos estas aproximaciones usando el método de restricciones diferenciales. Mostramos que algunos modelos algebraicos basados en el uso de la aproximación de equilibrio local pueden ser interpretadas como ecuaciones de variedades invariantes generadas por los modelos bajo consideración. La reducción de los modelos a las variedades correspondientes hicieron posible encontrar soluciones auto-similares y separar soluciones explícitas. Es más, algunas constantes empíricas pueden ser calculadas y los valores obtenidos son cercanos a las cantidades recomendadas.
Citas
Grebenev, V.N.; Ilyushin, B.B.; Shokin, Yu.I. (2000) “The use of differential constraints for analyzing turbulence models”, J. Nonl. Sci. Numer. Simulation 1(4): 305–317.
Grebenev, V.N.; Ilyushin, B.B. (2002) “Invariant sets and explicit solutions to a third-order model for the shearless stratified turbulent flow”, J. Nonl. Math. Phys. 9(2): 74–86.
Ibragimov, N.H. (1985) Transformation Groups Applied to Mathematical Physics. Reidel.
Monin, A.S.; Yaglom, A.M. (1994) Statistical Hydromechanics, Gidrometeoizdat Vol 1, 2, St.-Petersburg (in Russian).
Chorin, A. (1977) Lecture Notices in Math. 615, Springer–Verlag, Berlin.
Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. (1984) The Differential Constraints Method and its Application to Gas Dynamics. Nauka, Novosibirsk (in Russian).
Kaptsov, O.V. (1995) “B-determining equations: applications to nonlinear partial differential equations”, Euro. J. Appl. Math. 6: 265–286.
Grebenev, V.N.; Demenkov, A. G.; Chernykh, G.G. (2002) “Analysis of the local-equilibrium approximation in the problem of a far plane turbulent wake”, Doklady Physics of Russian Academy of Sciences 385(1): 57–60.
Hanjalic, K.; Launder, B.F. (1972) “Fully developed asymetric flow in a plane channel”, J. Fluid Mech. 51: 301–335.
Lewellen, W. (1977) In: Handbook of Turbulence. Fundamentals and Applications. Plenum Press.
Harsha, P. In: Handbook of Turbulence. Fundamentals and Applications. Plenum Press, 1977.
Grebenev, V.N. (1998) “Dinámica de una huella plana turbulenta alejada”, Rev. Mat. Teor. Aplics. 5(1): 177–184.
Townsend, A.A. (1956) The Structure of Turbulent Shear Flow. Cambridge University Press.
Hanjalic, K.; Launder, B.E. (1972) “A Reynolds stress model of turbulence and its application to thin shear flows”, J. Fluid Mech. 52: 609–638.
Sabel’nikov, V. A. (1975) “Some specific feature of turbulent flows with zero excess momentum”, Uch. Zap. TsAGI 6(4): 71–74 (in Russian).
Dmitrienko, Yu.M.; Kovalev, I.I.; Luchko, N.N.; Cherepanov, P.Ya. (1987) “Investigation of the plane turbulent wakes with zero excess momentum”, Inzhenerno Fiz, Zh. 52(5): 743–751 (in Russian).
Cimbala, J.M.; Park, W.J. (1990) “An experimental investigation of the turbulent structure in a two-dimensional momentumless wake”, J. Fluid Mech. 213: 479–509.
Chernykh, G.G.; Fedorova, N.N. (1994) “Numerical simulation of plane turbulent wakes”, Math. Modelling 6(10): 14–24 (in Russian).
Chernykh, G.G.; Demenkov, A.G. (1997) “On numerical simulation of jet flows of viscous incompressible fluids”, Rus.J. Numer. Anal. Math. Modelling 12(2): 111–125.
Cherepanov, P.Ya.; Babenko, V.A. (1998) “Experimental and numerical study of flat momentuumless wake”, Int. J. Heat and Fluid Flow 19: 608–622.
Kurbatsky, A.F. (1988) Modelling of Nonlocal Turbulent Transport of Momentum and Heat. Nauka, Novosibirs (in Russian).
Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P. (1995) Blow-up in Quasiliniear Parabolic Equations. Walter de Gruyter, Berlin.
Kraichnan, R. (1962) “The closure problem of turbulence theory”, Proc. Symps. Appl. Math. 19: 199–225.
Ilyushin, B.B. (1999) “Model of fourth-order cumulants for prediction of turbulent transport by large-scale vortex structure”, J. Appl. Mechan. Tech. Phys. 40(5): 871–876.
Vázquez, J.L. (1985) “Hyperbolic aspects in the theory of the porous medium equation”, Proceedings of the Workshop on Metastability and PDE’s. Minnesota.
Barenblatt, G. I. (1996) Scaling, selfsimilar and intermediate asymptotics. Cambridge Texts in Applied Mathematics, 14.