Abstract
Introduction: One of the challenges identified to design effective colon cancer control strategies on a global scale is to have monitoring instruments to measure its evolution. Objective: To provide evidence for the monitoring of mortality from colon cancer in Mexico, integrating the spatial and temporal dimension in a 17-year period from 1998 to 2015. Methodology: The micro data analyzed comes from the death records documented by the establishments of medical services of the country's public institutions, this segment represents the main health care provider in the country. Therefore, the scope of the results is limited to the population that receives health care by the public health sector in the country. The data collection is made through the National Health Information System and the research approach is quantitative. Results: document a differentiated behavior at the regional scale, together with imbalances in the health care capacity for the border regions studied, where the states on the northern border exhibit the highest mortality rates, a particular high rate is found in Chihuahua State where a mortality rate of 68 Males and 49 for Females is found. Conclusions: The evidence found is a data driven source to guide control actions in specific populations, that may improve resource allocation. The private sector segment is not addressed by this study, a fact that represents a weakness of the research related to available data sources.
References
Arango, L.A., Giraldo, A. y Pardo, C.E. (2004). Mortalidad por cánceres del aparato digestivo en Colombia entre 1980 y 1998, análisis de tendencias y comparación regional. Rev Fac Med Univ Nac Colomb, 52(1), 19-37. Recuperado de https://revistas.unal.edu.co/index.php/revfacmed/article/view/43275
Aykan, N.F. (2015). Red Meat and Colorectal Cancer. Oncology Reviews, 9(1). doi: 10.4081/oncol.2015.288
Berkman, L. y Kawachi, I. (2000). Social epidemiology (2nd Ed). New York: Oxford University Press.
Bernstein, A.M., Song, M., Zhang, X., Pan, W., Fuchs C.S., Le N., … Wu, K. (2015). Processed and Unprocessed Red Meat and Risk of Colorectal Cancer: Analysis by Tumor Location and Modification by Time. PLOS ONE, 10(8), e0135959. Recuperado de https://dash.harvard.edu/bitstream/handle/1/22856846/4549221.pdf?sequence=1&isAllowed=y
Bertucci, F., Le Corroller-Soriano, A.-G., Monneur, A., Fluzin, S., Viens, P., Maraninchi, D., & Goncalves, A. (2020). E-health and “Cancer outside the hospital walls”, Big Data and artificial intelligence TT - Santé numérique et « cancer hors les murs », Big Data et intelligence artificielle. Bulletin du cancer, 107(1), 102–112. Recuperado de https://doi.org/10.1016/j.bulcan.2019.07.006
Bouvard, V., Loomis, D., Guyton, K.Z., Grosse. Y., Ghissassi, F.E., Benbrahim-Tallaa L, … Straif , K. (2015). Carcinogenicity of consumption of red and processed meat. The Lancet Oncology, 16(16), 1599-600. Recuperado de https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(15)00444-1/fulltext
Bray, F. & Pineros, M. (2016).Cancer patterns, trends and projections in Latin America and the Caribbean: a global context. Salud Publica Mex, 58(2), 104-117.
Comisión Nacional para el Desarrollo de los Pueblos Indígenas. (2010). Sistema de indicadores sobre la población indígena de México. México: CNDPI.
Cross, A.J., Ferrucci, L.M., Risch, A., Graubard, B.I., Ward, M.H., Park, Y., … Sinha R. (2010). A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer research, 70(6), 2406-2414. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/20215514
Espejel-Blanco, E. J, Camarena, D.M.J y Sandoval, S.A. (2014). Alimentos tradicionales en Sonora, México: factores que influyen en su consumo. Innovar., 24, 127-39.
Flores, M., Macias, N., Rivera, M., Lozada, A., Barquera, S., Rivera-Dommarco, J. & Tucker, K.L. (2010). Dietary patterns in Mexican adults are associated with risk of being overweight or obese. The Journal of nutrition, 140(10), 1869-1873. Recuperado de https://academic.oup.com/jn/article/140/10/1869/4689090
Glaser, S.L., Clarke, C.A., Gomez, S.L., O'Malley, C.D., Purdie, D.M. & West, D.W., (2005). Cancer Surveillance Research: A Vital Subdiscipline of Cancer Epidemiology. Cancer Causes & Control, 16(9), 1009-19.
Halpern, M.T., Pavluck, A.L., Ko, C.Y. y Ward, E.M. (2009). Factors Associated with Colon Cancer Stage at Diagnosis. Digestive Diseases and Sciences., 54(12), 2680. Recuperado de https://link.springer.com/article/10.1007/s10620-008-0669-0
Hanly, P., Soerjomataram, I. & Sharp, L. Measuring the societal burden of cancer: The cost of lost productivity due to premature cancer‐related mortality in Europe. (2015). International Journal of Cancer.136(4), E136-E45. Recuperado de https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-14-224
Hiatt, R.A. & Breen, N. (2008). The social determinants of cancer: a challenge for transdisciplinary science. American journal of preventive medicine, 35(2 Suppl), S141-50. Recuperado de https://www.ajpmonline.org/article/S0749-3797(08)00415-7/abstract
Honjo, K. (2004). Social epidemiology: Definition, history, and research examples. Environmental Health and Preventive Medicine, 9(5), 193-199. Recuperado de http://www.dgis.salud.gob.mx/contenidos/basesdedatos/std_defunciones_gobmx.html
Instituto Mexicano del Seguro Social. (2017). Informe al Ejecutivo Federal y al Congreso de la Unión sobre la Situación Financiera y los Riesgos del Instituto Mexicano del Seguro Social 2016-2017. Mexico: Autor
Instituto Nacional de Cancerología. (2015). Infografía Cáncer de colon. Recuperado de http://www.infocancer.org.mx/infografa-cncer-colon-y-recto-con975i0.html
Jemal, A., Center, M.M., DeSantis, C. & Ward, E.M. (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer epidemiology, biomarkers & prevention, 19(8), 1893-907. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/20647400
Krieger, N. (2001). A glossary for social epidemiology. Journal of Epidemiology and Community Health, 55(10), 693-700. Recuperado de https://jech.bmj.com/content/55/10/693
Leatherman, T.L. & Goodman A. (2005). Coca-colonization of diets in the Yucatan. Social science & medicine, 61(4), 833-846. Recuperado de https://www.sciencedirect.com/science/article/abs/pii/S0277953604004587
Loría, E. y Salas, E. (2014). Sobrepeso e integración económica en México. Economía Informa, 389, 3-18.
Manzanares Rivera, J.L. (2018). Manifestaciones de salud asociadas a elementos medio ambientales: el caso de la ocurrencia de coccidioidomicosis en México 2004-2015. Población y Salud en Mesoamérica, 15(2). DOI: 10.15517/psm.v15i2.30201
Manzanares Rivera, J.L. (2017). Type 2 diabetes mortality at Mexican borders. Población y Salud en Mesoamérica, 14(2), 1-20. DOI 10.15517/psm.v14i2.27028
McDaniel, J.T., Nuhu, K., Ruiz, J. & Alorbi, G. (2017). Social determinants of cancer incidence and mortality around the world: an ecological study. Global health promotion, 26(1), 41-49. DOI: 10.1177/1757975916686913.
Montenegro, R.A. & Stephens, C.(2006) Indigenous health in Latin America and the Caribbean. The Lancet; 367(9525), 1859-69.
Organización Mundial de la Salud. (2017). Ten Years in Public Health 2007-2017. Geneva: Organización Mundial de la Salud.
Organización para la Coperación y Desarrollo Eocnómicos. (2019). Indicator overview: comparative performance of countries and major trends. In Health at a Glance. Health at a Glance 2019. DOI: https://doi.org/10.1787/4dd50c09-en
Pinheiro, P.S., Callahan, K.E., Stern, M.C. & de Vries E. (2018). Migration from Mexico to the United States: A high‐speed cancer transition. International Journal of Cancer,142(3), 477-88. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/28940515
Pinzón-Florez, C,E., Vargas, F. y Barriga J.C. (2010). Estrategias de prevención primaria y tamización para cáncer colorrectal: ¿cuál estrategia debemos tomar? Revista Ciencias de la Salud, 7(3), 27-31. Recuperado de https://revistas.urosario.edu.co/index.php/revsalud/article/view/892
Reyes-Piñeros, C.E., Saldarriaga-Cuartas, M., y Davalos, D.M., (2015). El cáncer de colon y recto en cuidados paliativos: una mirada desde los significados del paciente. Avances en Psicología Latinoamericana, 33(3), 439-454. Recuperado de http://www.scielo.org.co/scielo.php?pid=S1794-47242015000300007&script=sci_abstract&tlng=es
Riba, M., Sala, C., Toniolo, D. & Tonon, G. (2019). Big Data in Medicine, the Present and Hopefully the Future. Frontiers in Medicine, 6, 263. https://doi.org/10.3389/fmed.2019.00263.
Schuurman, N., Hameed, S.M., Fiedler, R., Bell, N. & Simons, R.K. (2008). The spatial epidemiology of trauma: the potential of geographic information science to organize data and reveal patterns of injury and services. Canadian Journal of Surgery, 51(5), 389-95. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/18841227
Sistema Nacional de Información en Salud. (2015). Base de datos sobre defunciones, Mexico. Recuperado en http://www.dgis.salud.gob.mx/contenidos/sinais/subsistema1.html
Susser, Z.S. (2009). Eras in Epidemiology: The Evolution of Ideas. Nueva York: Oxford University Press.
Taddei, C.M., Robles, J. y Garza, C. (2012). Patrones de consumo de carne en el noroeste de México. Estudios Sociales, (2), 75-96. Recuperado de
https://www.ciad.mx/archivos/revista-dr/RES_ESP2/RES_Especial_2_04_Taddei.pdf
Tisnés, A. (2014). Análisis espacial de la mortalidad por cáncer en Tandil 2003-2005 utilizando métodos bayesianos. (2014). Estudios Socioterritoriales: Revista de Geografía, 15(1), 45-76. Recuperado de https://ri.conicet.gov.ar/handle/11336/74508
Turner, N.D. & Lloyd, S.K., (2017). Association between red meat consumption and colon cancer: A systematic review of experimental results. Experimental Biology and Medicine, 242(8), 813-39. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/28205448