Abstract
Introduction: Ionizing radiation (IR) is capable of causing DNA damage. For the evaluation of this phenomenon it is possible to use chromosomal aberrations as biomarkers. The “Cytokinesis-Block Micronucleus assay” (CBMN) is a cytogenetic technique that allows to demonstrate the effect of genotoxic agents. Proposition: in the present review, we will describe the molecular mechanisms involved in micronucleus radioinduction, the micronucleus technique and criteria for analysis, its applications within biological research and its extension in clinical research, with emphasis on its application as a biomarker of radioinduced genetic damage. Arguments for discussion: the CBMN is considered a reliable, simple and fast technique and there is evidence of its applicability in the evaluation of biological effects in occupationally exposed personnel and in isolated or large-scale radiological accidents. Conclusions: the CBMN a valuable tool in estimating radiological risk in populations exposed to low doses of IR, allowing to guide decision-making regarding prevention or mitigation of exposure to IR in populations involved. Similarly, the CBMN can be used in research in the field of radiobiology, as a means to describe the effects of ionizing radiation on DNA.
References
Alotaibi, M., Alsuhaibani, E. y Alsbeih, G. (2018). Assessment of In vitro X-Ray Radiation Overexposure by Cytokinesis-Block Micronucleus Assay in Human Peripheral Blood Lymphocytes (HPBLs) in Saudi Population. Cellular and Molecular Biology, 64(1), 148. https://www.omicsonline.org/open-access/assessment-of-in-vitro-xray-radiation-overexposure-by-cytokinesisblock-micronucleus-assay-in-human-peripheral-blood-lymphocytes-hp-1165-158X-1000148-104159.html?view=mobile
Angelini, S., Kumar, R., Carbone, F., Maffei, F., Forti, G. C., Saverio Violante, F., Lodi, V., Curti, S., Hemminki, K., y Hrelia, P. (2005). Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphisms in DNA repair genes. Mutation Research. https://doi.org/10.1016/j.mrfmmm.2004.10.007
Antonin, W. y Neumann, H. (2016). Chromosome condensation and decondensation during mitosis. Current Opinion in Cell Biology, 40, 15–22. https://doi.org/10.1016/j.ceb.2016.01.013
Averbeck, D. (2009). Does scientific evidence support a change from the LNT model for low-dose radiation nrisk extrapolation? Health Physics, 97(5), 493–504.
Badie, C., Hess, J., Zitzelsberger, H. y Kulka, U. (2016). Established and Emerging Biomarkers of Radiation Exposure. Clinical Oncology. https://doi.org/10.1016/j.clon.2016.06.002
Bouraoui, S., Mougou, S., Drira, A., Tabka, F., Bouali, N., Mrizek, N., Elghezal, H. y Saad, A. (2013). A cytogenetic approach to the effects of low levels of ionizing radiation (IR) on the exposed Tunisian hospital workers. International Journal of Occupational Medicine and Environmental Health, 26(1), 144–154. https://doi.org/10.2478/s13382-013-0084-4
Cannan, W. J. y Pederson, D. S. (2016). Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin. J Cell Physiol, 231(1), 3–14. https://doi.org/0.1002/jcp.25048. Autho
Cannan, W. J., Tsang, B., Wallace, S. y Pederson, D. S. (2014). Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages. J Biol Chem, 289(29), 19881–19893. https://doi.org/10.1074/jbc.M114.571588
Cardarelli, J. J. y Ulsh, B. A. (2018). It is time to move beyond the linear no-threshold theory for low-dose radiation protection. Dose-Response, 16(3). https://doi.org/10.1177/1559325818779651
Carter, R. J., Nickson, C. M., Thompson, J. M., Kacperek, A., Hill, M. A. y Parsons, J. L. (2018). Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response. International Journal of Radiation Oncology Biology Physics, 100(3), 776–784. https://doi.org/10.1016/j.ijrobp.2017.11.012
Castillo, E., Guevara-Fujita, M. L. y Fujita, R. (2011). Optimización del test de micronúcleos en linfocitos cultivados usando una metodología de gradiente y frotis. Revista Peruana de Biología.
Cho, Y. H., Kim, Y. J., An, Y. S., Woo, H. D., Choi, S. Y., Kang, C. M. y Chung, H. W. (2009). Micronucleus-centromere assay and DNA repair gene polymorphism in lymphocytes of industrial radiographers. Mutation Research - Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/j.mrgentox.2009.08.007
Cronenwett, J. y Johnston, K. (2018). Rutherford’s vascular surgery. (9th ed.). Elsevier.
Deminge, M., Radl, A., Taja, M., Fernández-Rearte, J., Cabitto, M. y Di Gior. (2018). Aplicabilidad del ensayo de micronúcleos - dosímetro biológico en escenarios con víctimas múltiples. Congreso Regional de La Asociación Internacional de Protección Radiológica.
Falck, G. (2014). Micronuclei in Human Peripheral Lymphocytes – Mechanistic Origin and Use as a Biomarker of Genotoxic Effects in Occupational Exposure.
Fenech, M., Chang, W. P., Kirsch-Volders, M., Holland, N., Bonassi, S. y Zeiger, E. (2003). HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 534(1–2), 65–75. https://doi.org/10.1016/S1383-5718(02)00249-8
Fenech, M., Kirsch-Volders, M., Natarajan, A. T., Surralles, J., Crott, J. W., Parry, J., Norppa, H., Eastmond, D. A., Tucker, J. D. y Thomas, P. (2011). Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26(1), 125–132. https://doi.org/10.1093/mutage/geq052
Fenech, M. y Morley, A. (1985). Measurement of micronuclei in lymphocytes. Mutation Research/Environmental Mutagenesis and Related Subjects, 147(1), 29–36. https://doi.org/10.1016/0165-1161(85)90015-9
Forster, J. C., Douglass, M. J. J., Phillips, W. M. y Bezak, E. (2019). Stochastic multicellular modeling of x-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-54941-1
Giaccia, E., Hall, J. y Amato, J. (2012). Radiobiology for the radiologist. (7th ed.). Lippincott Williams & Williams.
Hall, J., Jeggo, P. A., West, C., Gomolka, M., Quintens, R., Badie, C. Cardis, E. (2017). Ionizing radiation biomarkers in epidemiological studies – An update. In Mutation Research - Reviews in Mutation Research (Vol. 771, pp. 59–84). Elsevier B.V. https://doi.org/10.1016/j.mrrev.2017.01.001
Huda, W. (2016). Review of radiologic physics (4th ed.). Wolters Kluwer.
International Atomic Energy Agency. (2010). Radiation Biology: A Handbook for Teachers and Students. International Atomic Energy Agency (ed.).
International Commision on Radiological Protection. (2011). ICRP statement on Tissue Reactions [Archivo PDF]. http://www.icrp.org/docs/ICRP Statement on Tissue Reactions.pdf
International Commision on Radiological Protection. (2019). Dose limits. http://icrpaedia.org/Dose_limits
Joiner, M. y van der Kogel, A. (2019). Basic Clinical Radiobiology. (5th ed.). CRC Press.
Kavanagh, J., Redmond, K., Schettino, G. y Prise, K. (2013). DSB Repair - A radiation perspective. Antioxidants & Redox Signaling, 18, 2458–2472.
Khoronenkova, S. V. y Dianov, G. L. (2015). ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1416031112
Kirsch-Volders, M., Plas, G., Elhajouji, A., Lukamowicz, M., Gonzalez, L., Vande Loock, K. y Decordier, I. (2011). The in vitro MN assay in 2011: Origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Archives of Toxicology, 85(8), 873–899. https://doi.org/10.1007/s00204-011-0691-4
Kisurina-Evgenieva, O. P., Sutiagina, O. I. y Onishchenko, G. E. (2016). Biogenesis of micronuclei. Biochemistry (Moscow). https://doi.org/10.1134/S0006297916050035
Lavelle, C. y Foray, N. (2014). Chromatin structure and radiation-induced DNA damage: From structural biology to radiobiology. International Journal of Biochemistry and Cell Biology, 49, 84–97. https://doi.org/10.1016/j.biocel.2014.01.012
Luzhna, L., Kathiria, P. y Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Frontiers in Genetics, 4(JUL), 1–17. https://doi.org/10.3389/fgene.2013.00131
Lyulko, O. V., Garty, G., Randers-Pehrson, G., Turner, H. C., Szolc, B. y Brenner, D. J. (2014). Fast Image Analysis for the Micronucleus Assay in a Fully Automated High-Throughput Biodosimetry System. Radiation Research. https://doi.org/10.1667/RR13441.1
Maher, C. A. y Wilson, R. K. (2012). Chromothripsis and human disease: Piecing together the shattering process. In Cell. https://doi.org/10.1016/j.cell.2012.01.006
Maluf, S. W., Passos, D. F., Bacelar, A., Speit, G. y Erdtmann, B. (2001). Assessment of DNA damage in lymphocytes of workers exposed to X-radiation using the micronucleus test and the comet assay. Environmental and Molecular Mutagenesis, 38(4), 311–315. https://doi.org/10.1002/em.10029
Miszczyk, J., Rawojć, K., Panek, A., Gałaś, A., Kowalska, A., Szczodry, A. y Brudecki, K. (2019). Assessment of the nuclear medicine personnel occupational exposure to radioiodine. European Journal of Radiology, 121(October). https://doi.org/10.1016/j.ejrad.2019.108712
Morishita, M., Muramatsu, T., Suto, Y., Hirai, M., Konishi, T., Hayashi, S., Shigemizu, D., Tsunoda, T., Moriyama, K. y Inazawa, J. (2016). Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget, 7(9), 10182–10192. https://doi.org/10.18632/oncotarget.7186
Nickoloff, J., Sharma, N. y Taylor, L. (2013). Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Genes, 11(99). https://doi.org/10.1016/j.clon.2013.06.007
Nikitaki, Z., Nikolov, V., Mavragani, I. V., Mladenov, E., Mangelis, A., Laskaratou, D. A., Fragkoulis, G. I., Hellweg, C. E., Martin, O. A., Emfietzoglou, D., Hatzi, V. I., Terzoudi, G. I., Iliakis, G. y Georgakilas, A. G. (2016). Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radical Research, 50(sup1), S64–S78. https://doi.org/10.1080/10715762.2016.1232484
Okada, K. y Fujisawa, M. (2019). Recovery of spermatogenesis following cancer treatment with cytotoxic chemotherapy and radiotherapy. World Journal of Men's Health, 37(2), 166–174. https://doi.org/10.5534/wjmh.180043
Organismo Internacional de Energía Atómica. (2014). Dosimetría citogenética: Aplicaciones en materia de preparación y respuesta a las emergencias radiológicas. Organismo Internacional de Energía Atómica.
Pajic, J., Jovicic, D. y Milovanovic, A. (2017). Micronuclei as a marker for medical screening of subjects continuously occupationally exposed to low doses of ionizing radiation. Biomarkers, 22(5), 439–445. https://doi.org/10.1080/1354750X.2016.1217934
Palanikumar, L. y Panneerselvam, N. (2011). Micronuclei assay: A potential biomonitoring protocol in occupational exposure studies. Russian Journal of Genetics, 47(9), 1033–1038. https://doi.org/10.1134/S1022795411090146
Purnami, S., Nurhayati, S., Syaifudin, M. y Ramadhani, D. (2017). Biological Dosimetry Using Micronucleus Assay in Simulated Partial-Body Exposure to Ionizing Radiation. Atom Indonesia, 43(2), 75–80.
Rassool, F. V. y Tomkinson, A. E. (2010). Targeting abnormal DNA double strand break repair in cancer. Cellular and Molecular Life Sciences : CMLS. https://doi.org/10.1007/s00018-010-0493-5
Rawojć, K., Tarnawska, D. M., Miszczyk, J. U., Swakoń, J., Stolarczyk, L. y Rydygier, M. (2015). Application of the micronucleus assay performed by different scorers in case of large-scale radiation accidents. Nukleonika, 60(3), 643–649. https://doi.org/10.1515/nuka-2015-0105
Rodrigues, M. A., Beaton-Green, L. A., Kutzner, B. C. y Wilkins, R. C. (2014). Multi-parameter dose estimations in radiation biodosimetry using the automated cytokinesis-block micronucleus assay with imaging flow cytometry. Cytometry Part A, 85(10), 883–893. https://doi.org/10.1002/cyto.a.22511
Rodrigues, M. A., Probst, C. E., Beaton-Green, L. A. y Wilkins, R. C. (2016). Optimized automated data analysis for the cytokinesis-block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry. Cytometry Part A. https://doi.org/10.1002/cyto.a.22887
Rodrigues, M., Beaton-Green, L., Wilkins, R. y Fenech, M. (2018). The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 836, 53–64. https://doi.org/https://doi.org/10.1016/j.mrgentox.2018.05.003
Sabharwal, R., Verma, P., Syed, M., Sharma, T., Subudhi, S., Mohanty, S. y Gupta, S. (2015). Emergence of micronuclei as a genomic biomarker. Indian Journal of Medical and Paediatric Oncology. https://doi.org/10.4103/0971-5851.171541
Sacristán, M. (2015). Modelado de Supervivencia Celular a Radiación Ionizante Basado en la Maximización de la Entropía de Tsallis [Universidad Nacional de Educación a Distancia de España]. http://e-spacio.uned.es/fez/eserv/bibliuned:master-Ciencias-FMed-Masacristan/Sacristan_Fernandez_Miguel_Angel_TCI.pdf
Sari-Minodier, I., Orsière, T., Auquier, P., Martin, F. y Botta, A. (2007). Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutation Research, 629(2), 111–121. https://doi.org/10.1016/j.mrgentox.2007.01.009
Schipler, A. y Iliakis, G. (2013). DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Research, 41(16), 7589–7605. https://doi.org/10.1093/nar/gkt556
Shibai-Ogata, A., Tahara, H., Yamamoto, Y., Fujita, M., Satoh, H., Yuasa, A., Hioki, T. y Kasahara, T. (2014). An automated new technique for scoring the in vivo micronucleus assay with image analysis. Mutagenesis, 29(1), 63–71. https://doi.org/10.1093/mutage/get064
Shibata, A. (2017). Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 803–805, 51–55. https://doi.org/10.1016/j.mrfmmm.2017.07.011
Sierra, C. (2011). Evaluación del efecto genotóxico de la Radiación Ionizante en médicos ortopedistas expuestos laboralmente, en cuatro instituciones de salud en Bogotá, Colombia 2011. Universidad Nacional de Colombia, Bogotá, Colombia.
Sommer, S., Buraczewska, I. y Kruszewski, M. (2020). Micronucleus assay: The state of art, and future directions. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041534
Strimbu, K. y Tavel, J. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463–466.
Sullivan, J. M., Prasanna, P. G. S., Grace, M. B., Wathen, L. K., Wallace, R. L., Koerner, J. F. y Coleman, C. N. (2013). Assessment of biodosimetry methods for a mass-casualty radiological incident: Medical response and management considerations. Health Physics. https://doi.org/10.1097/HP.0b013e31829cf221
Suto, Y., Akiyama, M., Noda, T. y Hirai, M. (2015). Construction of a cytogenetic dose-response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 794, 32–38. https://doi.org/10.1016/j.mrgentox.2015.10.002
Tamizh Selvan, G., Chaudhury, N. K. y Venkatachalam, P. (2015). Comparison of results of the manual and automated scoring of micronucleus frequencies in 60Co-irradiated peripheral blood lymphocytes for triage dosimetry. Applied Radiation and Isotopes, 97, 70–77. https://doi.org/10.1016/j.apradiso.2014.12.018
Torres-Bugarín, O., Zavala-Cerna, M. G., Nava, A., Flores-García, A. y Ramos-Ibarra, M. L. (2014). Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. In Disease Markers. https://doi.org/10.1155/2014/956835
Vaiserman, A. M. (2010). Radiation hormesis: Historical perspective and implications for low-dose cancer risk assessment. Dose-Response, 8(2), 172–191. https://doi.org/10.2203/dose-response.09-037.Vaiserman
Velickova, N., Milev, M., Ruskovska, T., Petrova, B., Nedeljkovik, B. y Gorgieva, P. (2015). Cytogenetic abnormalities in lymphocytes evaluated with micronucleus assay in medical personnel occupationally exposed to ionizing radiation. Genetika, 47(3), 927–939.
Vral, A., Fenech, M. y Thierens, H. (2011). The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis, 26(1), 11–17. https://doi.org/10.1093/mutage/geq078
Willems, P., August, L., Slabbert, J., Romm, H., Oestreicher, U., Thierens, H. y Vral, A. (2010). Automated micronucleus (MN) scoring for population triage in case of large scale radiation events. International Journal of Radiation Biology. https://doi.org/10.3109/09553000903264481
Zakeri, F. y Hirobe, T. (2010). A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. European Journal of Radiology, 73(1), 191–195. https://doi.org/10.1016/j.ejrad.2008.10.015
Zhang, X., Ye, C., Sun, F., Wei, W., Hu, B. y Wang, J. (2016). Both complexity and location of DNA damage contribute to cellular senescence induced by ionizing radiation. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0155725