Población y Salud en Mesoamérica ISSN electrónico: 1659-0201

OAI: https://revistas.ucr.ac.cr/index.php/psm/oai
Ensayo de micronúcleos con bloqueo de la citocinesis como biomarcador de daño genético en poblaciones sobreexpuestas a radiaciones ionizantes
PDF
HTML
EPUB
XML

Palabras clave

Micronuclei
Cytokinesis-block
Genotoxicity biomarkers
Ionizing radiation
Micronúcleos
Bloqueo de la citocinesis
Biomarcadores de genotoxicidad
Radiaciones ionizantes

Cómo citar

Chaves-Campos, F. A., Valle Bourrouet, L., Malespín-Bendaña, W., & Ramírez-Mayorga, V. (2021). Ensayo de micronúcleos con bloqueo de la citocinesis como biomarcador de daño genético en poblaciones sobreexpuestas a radiaciones ionizantes. Población Y Salud En Mesoamérica, 19(2). https://doi.org/10.15517/psm.v19i2.48078

Resumen

Introducción: las radiaciones ionizantes (RI) son capaces de perjudicar el ADN; para evaluar este fenómeno es posible utilizar la formación de micronúcleos como biomarcador de efecto temprano del daño radioinducido. El ensayo de micronúcleos con bloqueo de la citocinesis (MNBC) es una técnica citogenética que permite demostrar el impacto de agentes genotóxicos. Propósito: en el presente trabajo se describieron mecanismos moleculares involucrados en la radioinducción de micronúcleos, la técnica del MNBC, los criterios de análisis, sus aplicaciones dentro de la investigación biológica y su extensión a la clínica, con énfasis en su empleo como biomarcador del daño genético en grupos sobreexpuestos a RI. Argumentos para la discusión: el MNBC se considera un método confiable, simple y rápido y existe evidencia de su aplicabilidad para el estudio de los efectos biológicos en casos de riesgo ocupacional y en accidentes radiológicos aislados o a gran escala. Conclusiones: el MNBC es una herramienta valiosa que posibilita estimar las consecuencias por dosis bajas de RI en poblaciones involucradas y, a la vez, orientar la toma de decisiones en cuanto a su prevención o atenuación . De igual forma, puede ser utilizado en análisis del campo de la radiobiología, a fin de detallar las incidencias de las radiaciones ionizantes sobre el ADN.

https://doi.org/10.15517/psm.v19i2.48078
PDF
HTML
EPUB
XML

Citas

Alotaibi, M., Alsuhaibani, E. y Alsbeih, G. (2018). Assessment of In vitro X-Ray Radiation Overexposure by Cytokinesis-Block Micronucleus Assay in Human Peripheral Blood Lymphocytes (HPBLs) in Saudi Population. Cellular and Molecular Biology, 64(1), 148. https://www.omicsonline.org/open-access/assessment-of-in-vitro-xray-radiation-overexposure-by-cytokinesisblock-micronucleus-assay-in-human-peripheral-blood-lymphocytes-hp-1165-158X-1000148-104159.html?view=mobile

Angelini, S., Kumar, R., Carbone, F., Maffei, F., Forti, G. C., Saverio Violante, F., Lodi, V., Curti, S., Hemminki, K., y Hrelia, P. (2005). Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphisms in DNA repair genes. Mutation Research. https://doi.org/10.1016/j.mrfmmm.2004.10.007

Antonin, W. y Neumann, H. (2016). Chromosome condensation and decondensation during mitosis. Current Opinion in Cell Biology, 40, 15–22. https://doi.org/10.1016/j.ceb.2016.01.013

Averbeck, D. (2009). Does scientific evidence support a change from the LNT model for low-dose radiation nrisk extrapolation? Health Physics, 97(5), 493–504.

Badie, C., Hess, J., Zitzelsberger, H. y Kulka, U. (2016). Established and Emerging Biomarkers of Radiation Exposure. Clinical Oncology. https://doi.org/10.1016/j.clon.2016.06.002

Bouraoui, S., Mougou, S., Drira, A., Tabka, F., Bouali, N., Mrizek, N., Elghezal, H. y Saad, A. (2013). A cytogenetic approach to the effects of low levels of ionizing radiation (IR) on the exposed Tunisian hospital workers. International Journal of Occupational Medicine and Environmental Health, 26(1), 144–154. https://doi.org/10.2478/s13382-013-0084-4

Cannan, W. J. y Pederson, D. S. (2016). Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin. J Cell Physiol, 231(1), 3–14. https://doi.org/0.1002/jcp.25048. Autho

Cannan, W. J., Tsang, B., Wallace, S. y Pederson, D. S. (2014). Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages. J Biol Chem, 289(29), 19881–19893. https://doi.org/10.1074/jbc.M114.571588

Cardarelli, J. J. y Ulsh, B. A. (2018). It is time to move beyond the linear no-threshold theory for low-dose radiation protection. Dose-Response, 16(3). https://doi.org/10.1177/1559325818779651

Carter, R. J., Nickson, C. M., Thompson, J. M., Kacperek, A., Hill, M. A. y Parsons, J. L. (2018). Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response. International Journal of Radiation Oncology Biology Physics, 100(3), 776–784. https://doi.org/10.1016/j.ijrobp.2017.11.012

Castillo, E., Guevara-Fujita, M. L. y Fujita, R. (2011). Optimización del test de micronúcleos en linfocitos cultivados usando una metodología de gradiente y frotis. Revista Peruana de Biología.

Cho, Y. H., Kim, Y. J., An, Y. S., Woo, H. D., Choi, S. Y., Kang, C. M. y Chung, H. W. (2009). Micronucleus-centromere assay and DNA repair gene polymorphism in lymphocytes of industrial radiographers. Mutation Research - Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/j.mrgentox.2009.08.007

Cronenwett, J. y Johnston, K. (2018). Rutherford’s vascular surgery. (9th ed.). Elsevier.

Deminge, M., Radl, A., Taja, M., Fernández-Rearte, J., Cabitto, M. y Di Gior. (2018). Aplicabilidad del ensayo de micronúcleos - dosímetro biológico en escenarios con víctimas múltiples. Congreso Regional de La Asociación Internacional de Protección Radiológica.

Falck, G. (2014). Micronuclei in Human Peripheral Lymphocytes – Mechanistic Origin and Use as a Biomarker of Genotoxic Effects in Occupational Exposure.

Fenech, M., Chang, W. P., Kirsch-Volders, M., Holland, N., Bonassi, S. y Zeiger, E. (2003). HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 534(1–2), 65–75. https://doi.org/10.1016/S1383-5718(02)00249-8

Fenech, M., Kirsch-Volders, M., Natarajan, A. T., Surralles, J., Crott, J. W., Parry, J., Norppa, H., Eastmond, D. A., Tucker, J. D. y Thomas, P. (2011). Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26(1), 125–132. https://doi.org/10.1093/mutage/geq052

Fenech, M. y Morley, A. (1985). Measurement of micronuclei in lymphocytes. Mutation Research/Environmental Mutagenesis and Related Subjects, 147(1), 29–36. https://doi.org/10.1016/0165-1161(85)90015-9

Forster, J. C., Douglass, M. J. J., Phillips, W. M. y Bezak, E. (2019). Stochastic multicellular modeling of x-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-54941-1

Giaccia, E., Hall, J. y Amato, J. (2012). Radiobiology for the radiologist. (7th ed.). Lippincott Williams & Williams.

Hall, J., Jeggo, P. A., West, C., Gomolka, M., Quintens, R., Badie, C. Cardis, E. (2017). Ionizing radiation biomarkers in epidemiological studies – An update. In Mutation Research - Reviews in Mutation Research (Vol. 771, pp. 59–84). Elsevier B.V. https://doi.org/10.1016/j.mrrev.2017.01.001

Huda, W. (2016). Review of radiologic physics (4th ed.). Wolters Kluwer.

International Atomic Energy Agency. (2010). Radiation Biology: A Handbook for Teachers and Students. International Atomic Energy Agency (ed.).

International Commision on Radiological Protection. (2011). ICRP statement on Tissue Reactions [Archivo PDF]. http://www.icrp.org/docs/ICRP Statement on Tissue Reactions.pdf

International Commision on Radiological Protection. (2019). Dose limits. http://icrpaedia.org/Dose_limits

Joiner, M. y van der Kogel, A. (2019). Basic Clinical Radiobiology. (5th ed.). ‎ CRC Press.

Kavanagh, J., Redmond, K., Schettino, G. y Prise, K. (2013). DSB Repair - A radiation perspective. Antioxidants & Redox Signaling, 18, 2458–2472.

Khoronenkova, S. V. y Dianov, G. L. (2015). ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1416031112

Kirsch-Volders, M., Plas, G., Elhajouji, A., Lukamowicz, M., Gonzalez, L., Vande Loock, K. y Decordier, I. (2011). The in vitro MN assay in 2011: Origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Archives of Toxicology, 85(8), 873–899. https://doi.org/10.1007/s00204-011-0691-4

Kisurina-Evgenieva, O. P., Sutiagina, O. I. y Onishchenko, G. E. (2016). Biogenesis of micronuclei. Biochemistry (Moscow). https://doi.org/10.1134/S0006297916050035

Lavelle, C. y Foray, N. (2014). Chromatin structure and radiation-induced DNA damage: From structural biology to radiobiology. International Journal of Biochemistry and Cell Biology, 49, 84–97. https://doi.org/10.1016/j.biocel.2014.01.012

Luzhna, L., Kathiria, P. y Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Frontiers in Genetics, 4(JUL), 1–17. https://doi.org/10.3389/fgene.2013.00131

Lyulko, O. V., Garty, G., Randers-Pehrson, G., Turner, H. C., Szolc, B. y Brenner, D. J. (2014). Fast Image Analysis for the Micronucleus Assay in a Fully Automated High-Throughput Biodosimetry System. Radiation Research. https://doi.org/10.1667/RR13441.1

Maher, C. A. y Wilson, R. K. (2012). Chromothripsis and human disease: Piecing together the shattering process. In Cell. https://doi.org/10.1016/j.cell.2012.01.006

Maluf, S. W., Passos, D. F., Bacelar, A., Speit, G. y Erdtmann, B. (2001). Assessment of DNA damage in lymphocytes of workers exposed to X-radiation using the micronucleus test and the comet assay. Environmental and Molecular Mutagenesis, 38(4), 311–315. https://doi.org/10.1002/em.10029

Miszczyk, J., Rawojć, K., Panek, A., Gałaś, A., Kowalska, A., Szczodry, A. y Brudecki, K. (2019). Assessment of the nuclear medicine personnel occupational exposure to radioiodine. European Journal of Radiology, 121(October). https://doi.org/10.1016/j.ejrad.2019.108712

Morishita, M., Muramatsu, T., Suto, Y., Hirai, M., Konishi, T., Hayashi, S., Shigemizu, D., Tsunoda, T., Moriyama, K. y Inazawa, J. (2016). Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget, 7(9), 10182–10192. https://doi.org/10.18632/oncotarget.7186

Nickoloff, J., Sharma, N. y Taylor, L. (2013). Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Genes, 11(99). https://doi.org/10.1016/j.clon.2013.06.007

Nikitaki, Z., Nikolov, V., Mavragani, I. V., Mladenov, E., Mangelis, A., Laskaratou, D. A., Fragkoulis, G. I., Hellweg, C. E., Martin, O. A., Emfietzoglou, D., Hatzi, V. I., Terzoudi, G. I., Iliakis, G. y Georgakilas, A. G. (2016). Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radical Research, 50(sup1), S64–S78. https://doi.org/10.1080/10715762.2016.1232484

Okada, K. y Fujisawa, M. (2019). Recovery of spermatogenesis following cancer treatment with cytotoxic chemotherapy and radiotherapy. World Journal of Men's Health, 37(2), 166–174. https://doi.org/10.5534/wjmh.180043

Organismo Internacional de Energía Atómica. (2014). Dosimetría citogenética: Aplicaciones en materia de preparación y respuesta a las emergencias radiológicas. Organismo Internacional de Energía Atómica.

Pajic, J., Jovicic, D. y Milovanovic, A. (2017). Micronuclei as a marker for medical screening of subjects continuously occupationally exposed to low doses of ionizing radiation. Biomarkers, 22(5), 439–445. https://doi.org/10.1080/1354750X.2016.1217934

Palanikumar, L. y Panneerselvam, N. (2011). Micronuclei assay: A potential biomonitoring protocol in occupational exposure studies. Russian Journal of Genetics, 47(9), 1033–1038. https://doi.org/10.1134/S1022795411090146

Purnami, S., Nurhayati, S., Syaifudin, M. y Ramadhani, D. (2017). Biological Dosimetry Using Micronucleus Assay in Simulated Partial-Body Exposure to Ionizing Radiation. Atom Indonesia, 43(2), 75–80.

Rassool, F. V. y Tomkinson, A. E. (2010). Targeting abnormal DNA double strand break repair in cancer. Cellular and Molecular Life Sciences : CMLS. https://doi.org/10.1007/s00018-010-0493-5

Rawojć, K., Tarnawska, D. M., Miszczyk, J. U., Swakoń, J., Stolarczyk, L. y Rydygier, M. (2015). Application of the micronucleus assay performed by different scorers in case of large-scale radiation accidents. Nukleonika, 60(3), 643–649. https://doi.org/10.1515/nuka-2015-0105

Rodrigues, M. A., Beaton-Green, L. A., Kutzner, B. C. y Wilkins, R. C. (2014). Multi-parameter dose estimations in radiation biodosimetry using the automated cytokinesis-block micronucleus assay with imaging flow cytometry. Cytometry Part A, 85(10), 883–893. https://doi.org/10.1002/cyto.a.22511

Rodrigues, M. A., Probst, C. E., Beaton-Green, L. A. y Wilkins, R. C. (2016). Optimized automated data analysis for the cytokinesis-block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry. Cytometry Part A. https://doi.org/10.1002/cyto.a.22887

Rodrigues, M., Beaton-Green, L., Wilkins, R. y Fenech, M. (2018). The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 836, 53–64. https://doi.org/https://doi.org/10.1016/j.mrgentox.2018.05.003

Sabharwal, R., Verma, P., Syed, M., Sharma, T., Subudhi, S., Mohanty, S. y Gupta, S. (2015). Emergence of micronuclei as a genomic biomarker. Indian Journal of Medical and Paediatric Oncology. https://doi.org/10.4103/0971-5851.171541

Sacristán, M. (2015). Modelado de Supervivencia Celular a Radiación Ionizante Basado en la Maximización de la Entropía de Tsallis [Universidad Nacional de Educación a Distancia de España]. http://e-spacio.uned.es/fez/eserv/bibliuned:master-Ciencias-FMed-Masacristan/Sacristan_Fernandez_Miguel_Angel_TCI.pdf

Sari-Minodier, I., Orsière, T., Auquier, P., Martin, F. y Botta, A. (2007). Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutation Research, 629(2), 111–121. https://doi.org/10.1016/j.mrgentox.2007.01.009

Schipler, A. y Iliakis, G. (2013). DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Research, 41(16), 7589–7605. https://doi.org/10.1093/nar/gkt556

Shibai-Ogata, A., Tahara, H., Yamamoto, Y., Fujita, M., Satoh, H., Yuasa, A., Hioki, T. y Kasahara, T. (2014). An automated new technique for scoring the in vivo micronucleus assay with image analysis. Mutagenesis, 29(1), 63–71. https://doi.org/10.1093/mutage/get064

Shibata, A. (2017). Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 803–805, 51–55. https://doi.org/10.1016/j.mrfmmm.2017.07.011

Sierra, C. (2011). Evaluación del efecto genotóxico de la Radiación Ionizante en médicos ortopedistas expuestos laboralmente, en cuatro instituciones de salud en Bogotá, Colombia 2011. Universidad Nacional de Colombia, Bogotá, Colombia.

Sommer, S., Buraczewska, I. y Kruszewski, M. (2020). Micronucleus assay: The state of art, and future directions. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041534

Strimbu, K. y Tavel, J. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463–466.

Sullivan, J. M., Prasanna, P. G. S., Grace, M. B., Wathen, L. K., Wallace, R. L., Koerner, J. F. y Coleman, C. N. (2013). Assessment of biodosimetry methods for a mass-casualty radiological incident: Medical response and management considerations. Health Physics. https://doi.org/10.1097/HP.0b013e31829cf221

Suto, Y., Akiyama, M., Noda, T. y Hirai, M. (2015). Construction of a cytogenetic dose-response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 794, 32–38. https://doi.org/10.1016/j.mrgentox.2015.10.002

Tamizh Selvan, G., Chaudhury, N. K. y Venkatachalam, P. (2015). Comparison of results of the manual and automated scoring of micronucleus frequencies in 60Co-irradiated peripheral blood lymphocytes for triage dosimetry. Applied Radiation and Isotopes, 97, 70–77. https://doi.org/10.1016/j.apradiso.2014.12.018

Torres-Bugarín, O., Zavala-Cerna, M. G., Nava, A., Flores-García, A. y Ramos-Ibarra, M. L. (2014). Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. In Disease Markers. https://doi.org/10.1155/2014/956835

Vaiserman, A. M. (2010). Radiation hormesis: Historical perspective and implications for low-dose cancer risk assessment. Dose-Response, 8(2), 172–191. https://doi.org/10.2203/dose-response.09-037.Vaiserman

Velickova, N., Milev, M., Ruskovska, T., Petrova, B., Nedeljkovik, B. y Gorgieva, P. (2015). Cytogenetic abnormalities in lymphocytes evaluated with micronucleus assay in medical personnel occupationally exposed to ionizing radiation. Genetika, 47(3), 927–939.

Vral, A., Fenech, M. y Thierens, H. (2011). The micronucleus assay as a biological dosimeter of in vivo ionising radiation exposure. Mutagenesis, 26(1), 11–17. https://doi.org/10.1093/mutage/geq078

Willems, P., August, L., Slabbert, J., Romm, H., Oestreicher, U., Thierens, H. y Vral, A. (2010). Automated micronucleus (MN) scoring for population triage in case of large scale radiation events. International Journal of Radiation Biology. https://doi.org/10.3109/09553000903264481

Zakeri, F. y Hirobe, T. (2010). A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. European Journal of Radiology, 73(1), 191–195. https://doi.org/10.1016/j.ejrad.2008.10.015

Zhang, X., Ye, C., Sun, F., Wei, W., Hu, B. y Wang, J. (2016). Both complexity and location of DNA damage contribute to cellular senescence induced by ionizing radiation. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0155725

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.