Resumen
Introducción: las radiaciones ionizantes (RI) pueden inducir la formación de micronúcleos (MN). La frecuencia de MN se utiliza como biomarcador de daño genético inducido por (RI). Objetivo: evaluar el daño al ADN resultante de la exposición ocupacional a RI en personal de clínicas veterinarias o afines. Metodología: se utilizó el ensayo de micronúcleos con bloqueo de la citocinesis (MNBC) para comparar la frecuencia observada del biomarcador en 40 individuos expuestos ocupacionalmente a RI con respecto a un grupo control de 32 participantes, ambos grupos pertenecen a personal veterinario. Además, se registraron variables demográficas, de estilo de vida y ocupacionales que pudieran influir en la formación de MN. Resultados: el análisis univariado no demostró diferencias significativas en la frecuencia de MN entre los grupos de estudio (p = 0,118). Mediante análisis multivariado se obtuvo que aproximadamente un 27 % (R2 ajustado = 0,269) de la variabilidad de la frecuencia de MN se explica por la influencia conjunta de la edad, el sexo y el número de radiografías realizadas. La edad es la variable de mayor importancia relativa (β = 0,504), seguida del sexo (β = -0,316) y el número de radiografías diarias (β = 0,214). Conclusiones: la frecuencia de MN tiende a aumentar en mujeres, a medida que aumenta la edad del participante y a mayor número de radiografías realizadas.
Citas
Antonin, W. y Neumann, H. (2016). Chromosome condensation and decondensation during mitosis. Current Opinion in Cell Biology, 40, 15–22. https://doi.org/10.1016/j.ceb.2016.01.013
Averbeck, D. (2009). Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation?. Health Physics, 97(5), 493–504.
Baeyens, A., Swanson, R., Herd, O., Ainsbury, E., Mabhengu, T., Willem, P., Thierens, H., Slabbert, J. P. y Vral, A. (2011). A semi-automated micronucleus-centromere assay to assess low-dose radiation exposure in human lymphocytes. International Journal of Radiation Biology, 87(9), 923–931. https://doi.org/10.3109/09553002.2011.577508
Camacho, A. (2017). Propuesta para el fortalecimiento del servicio de radiología del Hospital de Especies Menores y Silvestres de la Universidad Nacional de Costa Rica, a partir del diagnóstico de los procedimientos empleados para los diferentes estudios, durante el período 2016-2017 [Tesis de licenciatura]. Universidad de Costa Rica, San José, Costa Rica.
Cannan, W. y Pederson, D. (2016). Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin. J Cell Physiol, 231(1), 3–14. https://doi.org/10.1002/jcp.25048
Cardarelli, J. y Ulsh, B. (2018). It is time to move beyond the linear no-threshold theory for low-dose radiation protection. Dose-Response, 16(3). https://doi.org/10.1177/1559325818779651
Catalán, J., Surrallés, J., Falck, G., Autio, K. y Norppa, H. (2000). Segregation of sex chromosomes in human lymphocytes. Mutagenesis, 15(3), 251–255. https://doi.org/10.1093/mutage/15.3.251
Chang, D., Foster, L., Das, I., Mendonca, M. y Dynlacht, J. (2021). Basic Radiotherapy Physics and Biology. Springer Nature. https://doi.org/https://doi.org/10.1007/978-3-030-61899-5
Duncan, J., Lieber, M., Adachi, N. y Wahl, R. (2018). Radiation dose does matter: Mechanistic insights into DNA damage and repair support the linear no-threshold model of low-dose radiation health risks. Journal of Nuclear Medicine, 59(7), 1014–1016. https://doi.org/10.2967/jnumed.118.210252
Durante, M. y Formenti, S. (2018). Radiation-induced chromosomal aberrations and immunotherapy: Micronuclei, cytosolic DNA, and interferon-production pathway. Frontiers in Oncology, 8, 192–202. https://doi.org/10.3389/fonc.2018.00192
El-Sayed, T., Patel, A., Cho, J., Kelly, J., Ludwinski, F., Saha, P., Lyons, O., Smith, A. y Modarai, B. (2017). Radiation-Induced DNA Damage in Operators Performing Endovascular Aortic Repair. Circulation, 136(25), 2406–2416. https://doi.org/10.1161/CIRCULATIONAHA.117.029550
Falck, G. (2014). Micronuclei in Human Peripheral Lymphocytes – Mechanistic Origin and Use as a Biomarker of Genotoxic Effects in Occupational Exposure [Tesis doctoral]. Universidad de Helsinki, Finlandia.
Fenech, M. y Bonassi, S. (2011). The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis, 26(1), 43–49. https://doi.org/10.1093/mutage/geq050
Fenech, M. y Morley, A. (1985). Measurement of micronuclei in lymphocytes. Mutation Research/Environmental Mutagenesis and Related Subjects, 147(1), 29–36. https://doi.org/10.1016/0165-1161(85)90015-9
Ferraz, G., Costa, A., Cerqueira, E. y Meireles, J. (2016). Effects of age on the frequency of micronuclei and degenerative nuclear abnormalities. Revista Brasileira de Geriatria e Gerontologia, 19(4), 627–634. https://doi.org/10.1590/1809-98232016019.150155
Giaccia, E., Hall, J. y Amato, J. (2012). Radiobiology for the radiologist. Lippincott Williams y Williams.
Guo, X., Ni, J., Liang, Z., Xue, J., Fenech, M. y Wang, X. (2019). The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. Mutation Research - Reviews in Mutation Research, 779, 1-35. https://doi.org/10.1016/j.mrrev.2018.11.001
Huda, W. (2016). Review of radiologic physics. Wolters Kluwer.
Joiner, M. y van der Kogel, A. (2019). Basic Clinical Radiobiology. CRC Press.
Kang, C., Yun, H., Kim, H. y Kim, C. (2016). Strong correlation among three biodosimetry techniques following exposures to ionizing radiation. Genome Integrity, 7(11). https://doi.org/10.4103/2041-9414.197168
Kavanagh, J., Redmond, K., Schettino, G. y Prise, K. (2013). DSB Repair - A radiation perspective. Antioxidants y Redox Signaling, 18, 2458–2472. https://doi.org/10.1089/ars.2012.5151
Khoronenkova, S. y Dianov, G. (2015). ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proceedings of the National Academy of Sciences, 112(13), 3997-4002. https://doi.org/10.1073/pnas.1416031112
Luzhna, L., Kathiria, P. y Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Frontiers in Genetics, 4. https://doi.org/10.3389/fgene.2013.00131
Maher, C. y Wilson, R. (2012). Chromothripsis and human disease: Piecing together the shattering process. Cell, 148(1), 59-71. https://doi.org/10.1016/j.cell.2012.01.006
Milosević-Djordjević, O., Grujiciĉ, D., Vaskoviĉ, Z. y Marinkoviĉ, D. (2010). High micronucleus frequency in peripheral blood lymphocytes of untreated cancer patients irrespective of gender, smoking and cancer sites. The Tohoku Journal of Experimental Medicine, 220(2), 115–120. https://doi.org/10.1620/tjem.220.115
Morishita, M., Muramatsu, T., Suto, Y., Hirai, M., Konishi, T., Hayashi, S., Shigemizu, D., Tsunoda, T., Moriyama, K. y Inazawa, J. (2016). Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget, 7(9), 10182–10192. https://doi.org/10.18632/oncotarget.7186
Narain, A., Hijji, F., Yom, K., Kudaravalli, K., Haws, B. y Singh, K. (2017). Radiation exposure and reduction in the operating room: Perspectives and future directions in spine surgery. World Journal of Orthopedics, 8(7), 524-530. https://doi.org/10.5312/wjo.v8.i7.524
Norppa, H. y Falck, G. (2003). What do human micronuclei contain? Mutagenesis, 18(3), 221–233. https://doi.org/10.1093/mutage/18.3.221
Organismo Internacional de Energía Atómica. (2014). Dosimetría citogenética: Aplicaciones en materia de preparación y respuesta a las emergencias radiológicas. Centro de Respuesta a Incidentes y Emergencias del OIEA. https://www-pub.iaea.org/MTCD/Publications/PDF/EPR_Biodosimetry_S_web.pdf
Pajic, J., Jovicic, D. y Milovanovic, A. (2017). Micronuclei as a marker for medical screening of subjects continuously occupationally exposed to low doses of ionizing radiation. Biomarkers, 22(5), 439–445. https://doi.org/10.1080/1354750X.2016.1217934
Qian, Q., Cao, X., Shen, F. y Wang, Q. (2016). Effects of ionising radiation on micronucleus formation and chromosomal aberrations in Chinese radiation workers. Radiation Protection Dosimetry, 168(2), 197–203. https://doi.org/10.1093/rpd/ncv290
Rastkhah, E., Zakeri, F., Ghoranneviss, M., Rajabpour, M., Farshidpour, M., Mianji, F. y Bayat, M. (2016). The cytokinesis-blocked micronucleus assay: dose–response calibration curve, background frequency in the population and dose estimation. Radiation and Environmental Biophysics, 55, 41–51. https://doi.org/10.1007/s00411-015-0624-3
Ryu, T., Kim, J. y Kim, J. (2016). Chromosomal aberrations in human peripheral blood lymphocytes after exposure to ionizing radiation. Genome Integrity, 7(1), 5. https://doi.org/10.4103/2041-9414.197172
Sari-Minodier, I., Orsière, T., Auquier, P., Martin, F. y Botta, A. (2007). Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutation Research, 629(2), 111–121. https://doi.org/10.1016/j.mrgentox.2007.01.009
Schipler, A. y Iliakis, G. (2013). DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Research, 41(16), 7589–7605. https://doi.org/10.1093/nar/gkt556
Shakeri, M., Zakeri, F., Changizi, V., Rajabpour, M. y Farshidpour, M. (2017). A cytogenetic biomonitoring of industrial radiographers occupationally exposed to low levels of ionizing radiation by using CBMN assay. Radiation Protection Dosimetry, 175(2), 246–251. https://doi.org/10.1093/rpd/ncw292
Siama, Z., Zosang-zuali, M., Vanlalruati, A., Jagetia, G., Pau, K. y Kumar, N. (2019). Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. International Journal of Radiation Biology, 95(6), 697–709. https://doi.org/10.1080/09553002.2019.1571255
Sierra, C. (2011). Evaluación del efecto genotóxico de la Radiación Ionizante en médicos ortopedistas expuestos laboralmente, en cuatro instituciones de salud en Bogotá, Colombia 2011 [Tesis de maestría]. Universidad de Colombia, Bogotá, Colombia.
Soltanpour, T., Zakeri, F., Changizi, V., Rajabpour, M. y Farshidpour, M. (2017). Low levels of ionizing radiation exposure and cytogenetic effects in radiopharmacists. Medical Communication Biosci. Biotech. Res. Comm, 10(1), 56–62. http://dx.doi.org/10.21786/bbrc/10.1/9
Sommer, S., Buraczewska, I. y Kruszewski, M. (2020). Micronucleus assay: The state of art, and future directions. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041534
Terzic, S., Milovanovic, A., Dotlic, J., Rakic, B. y Terzic, M. (2015). New models for prediction of micronuclei formation in nuclear medicine department workers. Journal of Occupational Medicine and Toxicology, 10(25). https://doi.org/10.1186/s12995-015-0066-5
Thierens, H. y Vral, A. (2009). The micronucleus assay in radiation accidents. Annali Dell’Istituto Superiore Di Sanita, 45(3), 260-4.
Torres-Bugarín, O., Zavala-Cerna, M. G., Nava, A., Flores-García, A. y Ramos-Ibarra, M. L. (2014). Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. Disease Markers, 2014. https://doi.org/10.1155/2014/956835
Vaiserman, A. M. (2010). Radiation hormesis: Historical perspective and implications for low-dose cancer risk assessment. Dose-Response, 8(2), 172–191. https://doi.org/10.2203/dose-response.09-037.
Wolff, H., Hennies, S., Herrmann, M., Rave-Fränk, M., Eickelmann, D., Virsik, P., Jung, K., Schirmer, M., Ghadimi, M., Hess, C., Hermann, R. y Christiansen, H. (2011). Comparison of the micronucleus and chromosome aberration techniques for the documentation of cytogenetic damage in radiochemotherapy-treated patients with rectal cancer. Strahlentherapie Und Onkologie, 187(1), 52–58. https://doi.org/10.1007/s00066-010-2163-9
Yamada, R., Saimyo, Y., Tanaka, K., Hattori, A., Umeda, Y., Kuroda, N., Tsuboi, J., Hamada, Y. y Takei, Y. (2020). Usefulness of an additional lead shielding device in reducing occupational radiation exposure during interventional endoscopic procedures: An observational study. Medicine, 99(34), e21831. https://doi.org/10.1097/MD.0000000000021831
Zakeri, F., Farshidpour, M. y Rajabpour, M. (2017). Occupational radiation exposure and genetic polymorphismsin DNA repair genes. Radioprotection, 52(4), 214–249. https://doi.org/10.1051/radiopro/2017025
Zakeri, F. y Hirobe, T. (2010). A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. European Journal of Radiology, 73(1), 191–195. https://doi.org/10.1016/j.ejrad.2008.10.015