Resumen
La prevalencia mundial de la discapacidad intelectual (DI) es del 3 %. Una de las causas más comunes de DI de origen genético son las aberraciones cromosómicas, las cuales resultan fácilmente detectables mediante un cariotipo. Sin embargo, muchas de estas pasan desapercibidas durante el análisis citogenético convencional debido a su tamaño. Estas pequeñas alteraciones se pueden localizar en los subtelómeros y se ha observado que, cuando es así, constituyen una razón importante de DI en pacientes que carecen de un diagnóstico de causalidad. En este estudio de tipo observacional, se utilizó la técnica MLPA con el objetivo de determinar la frecuencia de aberraciones cromosómicas submicroscópicas en los subtelómeros en una población infantil con DI de origen desconocido. Se examinaron 70 muestras de forma exitosa y se obtuvo un caso con una microduplicación en el subtelómero 17p, para una frecuencia del 1,4 %. También, se realizó el análisis citogenético en 33 muestras y se encontró un caso con una aberración cromosómica detectable al microscopio, para una frecuencia del 3 %. El porcentaje de aberraciones cromosómicas subteloméricas fue menor al esperado en comparación con estudios similares. Finalmente, se concluyó que el cariotipo y la técnica MLPA se complementan para el abordaje de personas con DI de origen desconocido.
Citas
Ahn, J., Mackie, C., Welch, A., Thomas, H., Madula, R., Hills, A., ... Mann, K. (2007). Detection of subtelomere imbalance using MLPA: validation, development of an analysis protocol, and application in a diagnostic centre. BMC Medical Genetics, 8(1), 1-13. doi: 10.1186/1471-2350-8-9
AAIDD. (s.f.). American Association on Intellectual and Developmental Disabilities. http://www.aaidd.org/.
Auber, B., Bruemmer, V., Zoll, B., Burfeind, P., Boehm, D., Liehr, T. ... Bartels, I. (2009). Identification of subtelomeric genomic imbalances and breakpoint mapping with quantitative PCR in 296 individuals with congenital defects and/or mental retardation. Molecular Cytogenetics, 2, 10. doi: 10.1186/1755-8166-2-10
Ballif, B., Sulpizio, S., Lloyd, R., Minier, S., Theisen, A., Bejjani, B., ... Shaffer, L.G. (2007). The clinical utility of enhanced subtelomeric coverage in array CGH. American Journal of Medical Genetics Part A, 143(16), 1850-1857. doi: 10.1002/ajmg.a.31842
Battaglia, A., Parrini, B. y Tancredi, R. (2010). The Behavioral Phenotype of the idic(15) Syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 154C(4), 448–455. doi: 10.1002/ajmg.c.30281
Boggula, V.R., Shukla, A., Danda, S., Hariharan, S.V., Nampoothiri, S., Kumar,R, … Phadke, S.R. (2014). Clinical utility of multiplex ligation-dependent probe amplification technique in identification of aetiology of unexplained mental retardation: A study in 203 Indian patients. The Indian Journal of Medical Research, 139(1), 66–75. https://www.researchgate.net/publication/260647376
Breman, A. y Stankiewicz, P. (2021). Karyotyping as the first genomic approach. En: Gonzaga-Jauregui, C. y Lupski, J.R. (Ed.), Genomics of Rare Diseases (pp. 17-34). London: Academic Press. doi: 10.1016/B978-0-12-820140-4.00002-8.
Castro, I., Ortiz, F. y Valle, L. (2011). Cien cariotipos fetales acreditados en Costa Rica, años 2009 y 2010. Acta Médica Costarricense, 53(4), 194-198. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0001-60022011000400007
Charalsawadi, C., Khayman, J., Praphanphoj, V. y Limprasert, P. (2016). Screening for Subtelomeric Rearrangements in Thai Patients with Intellectual Disabilities Using FISH and Review of Literature on Subtelomeric FISH in 15,591 Cases with Intellectual Disabilities. Genetics research international, 2016, 9153740. doi: 10.1155/2016/9153740
Costanzo, M., Kuzmin, E., van Leeuwen, J., Mair, B., Moffat, J., Boone, C. y Andrews, B. (2019). Global genetic networks and the genotype-to-phenotype relationship. Cell, 177(1), 85-100. doi: 10.1016/j.cell.2019.01.033
Delhanty, J. D., SenGupta, S. B. y Ghevaria, H. (2019). How common is germinal mosaicism that leads to premeiotic aneuploidy in the female?. Journal of assisted reproduction and genetics, 36(12), 2403-2418. doi: 10.1007/s10815-019-01644-1
Distefano, C., Wilson, R. y Jeste, S. (2019). Developmental and behavioral characteristics of children with Dup15q syndrome (P1. 6-041).
DiStefano, C., Wilson, R. B., Hyde, C., Cook, E. H., Thibert, R. L., Reiter, L. T., Vogel-Farley, V., Hipp, J. y Jeste, S. (2020). Behavioral characterization of dup15q syndrome: Toward meaningful endpoints for clinical trials. American journal of medical genetics. Part A, 182(1), 71–84. doi: 10.1002/ajmg.a.61385
Karnebeek van C, Koevoets C, Sluijter S, Bijlsma E, Smeets D, Redeker E. y Hoovers, J.(2002). Prospective screening for subtelomeric rearrangements in children with mental retardation of unknown aetiology: the Amsterdam experience. Journal of medical genetics, 39(8), 546-553. doi: 10.1136/jmg.39.8.546
Kirchhoff, M., Gerdes, T., Brunebjerg, S. y Bryndorf, T. (2005). Investigation of Patients With Mental Retardation and Dysmorphic Features Using Comparative Genomic Hybridization and Subtelomeric Multiplex Ligation Dependent Probe Amplication.American Journal of Medical Genetics, 139(3),231–233.doi: 10.1002/ajmg.a.31019
Koolen, D., Nillesen, W., Versteeg, M., Merkx, G., Knoers, N., Kets, M., ... Sistermans, E.A. (2004). Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). Journal of medical genetics, 41(12),892-899. doi: 10.1136/jmg.2004.023671.
Kurtas, N. E., Xumerle, L., Leonardelli, L., Delledonne, M., Brusco, A., Chrzanowska, K., … Zuffardi, O. (2019). Small supernumerary marker chromosomes: A legacy of trisomy rescue?. Human mutation, 40(2), 193–200. doi:10.1002/humu.23683
Hyun-Kyung, P., Hee-Jin, K., Hyun-Jun, K., Sung-Hee, H., Young-Jae, K. y Sun-Hee, K. (2008). Screening of Subtelomeric Rearrangements in 100 Korean Pediatric Patients with Unexplained Mental Retardation and Anomalies Using Subtelomeric FISH (Fluorescence In Situ Hybridization). Journal of Korean medical science, 23(4), 573-578. doi: 10.3346/jkms.2008.23.4.573
Li, H., Du, J., Li, W., Cheng, D., He, W., Yi, D., ... Tan, Y. Q. (2018). Rare partial octosomy and hexasomy of 15q11-q13 associated with intellectual impairment and development delay: report of two cases and review of literature. Molecular cytogenetics, 11, 15. doi: 10.1186/s13039-018-0365-5
Lusk, L., Vogel-Farley, V., DiStefano, C. y Jeste, S. (2016[actualizado 2021]). Maternal 15q Duplication Syndrome. En Adam, M.P.et. al., (Eds), GeneReviews® [Internet]. University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK367946/
Makoff, A. y Flomen, R. (2007). Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup (15) syndromes. Genomebiology, 8(6), R114. doi: 10.1186/gb-2007-8-6-r114
Medina, A., Piñeros, L., Arteaga, C., Velasco, H., Izquierdo, A., Giraldo, A. y Espinosa, E. (2014). Multiplex Ligation-Dependent Probe Amplification to Subtelomeric Rearrangements in Idiopathic Intellectual Disability in Colombia. Pediatric neurology, 50(3), 250–254. doi: 10.1016/j.pediatrneurol.2013.10.017
Meyyazhagan, A., Balasubramanian, B., Bhotla, H. K., Easwaran, M., Shanmugam, S., Alagamuthu, K. K., ... Pappusamy, M. (2021). Genetic and cytogenetic screening of autistic spectrum disorder: Genotype-phenotype profiles. Meta Gene, 29(6), 100924. doi:10.1016/j.mgene.2021.100924
Miller, D., Adam, M., Aradhya, S., Biesecker, L., Brothman, A., Carter, N., ... Letbetter, D.H. (2010). Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American journal of human genetics, 86(5), 749–764. doi: 10.1016/j.ajhg.2010.04.006.
Mohan, S., Koshy, T., Vekatachalam, P., Nampoothiri, S., Yesodharan, D., Gowrishankar, K., … Paul, S.F.D. (2016). Subtelomeric rearrangements in Indian children with idiopathic intellectual disability/developmental delay: Frequency estimation & clinical correlation using fluorescence in situ hybridization (FISH). The Indian journal of medical research, 144(2), 206-214. doi: 10.4103/0971-5916.195031.
Ortiz-Prado, E., Iturralde, A. L., Simbaña-Rivera, K., Gómez-Barreno, L., Hidalgo, I., Rubio-Neira, M., … Cabrera-Andrade, A. (2021). 15q Duplication Syndrome: Report on the First Patient from Ecuador with an Unusual Clinical Presentation. Case reports in medicine, 2021, 6662054. doi: 10.1155/2021/6662054
Pickard, B., EHollox, E., Malloy, M., Porteous, D., Blackwood, D., Armour, J., … Muir, W.J. (2004). A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation. BMC Medical Genetics, 5, 21. doi: 10.1186/1471-2350-5-21
Putcha, B., Jia, X., Katkoori, V., Salih, C., Shanmugam, C., Jadhav, T., … Manne, U. (2015). Clinical Implications of Rabphillin-3A-Like Gene Alterations in Breast Cancer. PLoS ONE, 10(6), e0129216. doi:10.1371/journal.pone.0129216.
Ramsden, S., Clayton, J., Birch, R. y Buiting, K. (2010). Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Medical Genetics, 11, 70. doi: 10.1186/1471-2350-11-70
Ravnan, J., Tepperberg, J., Papenhausen, P., Lamb, A., Hedrick, J., Eash, D., … Martin, C.L.(2006). Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. Journal of medical genetics, 43(6), 478–489. doi: 10.1136/jmg.2005.036350.
Rooms, L., Reyniers, E., Wuyts, W., Storm, K., Van Luijk, R., Scheers, S. …Kooy, R. (2006). Multiplex ligation‐dependent probe amplification to detect subtelomeric rearrangements in routine diagnostics. Clinical Genetics, 69(1), 58-64. doi: 10.1111/j.1399-0004.2005.00545.x
Santa María, L., Faundes, V., Curotto, B., Morales, P., Morales, K., Aliaga, S., … Alliende, M.A. (2016). Comparison of two subtelomeric assays for the screening of chromosomal rearrangements: analysis of 383 patients, literature review and further recommendations. Journal of Applied Genetics, 57, 63-69. doi: 10.1007/s13353-015-0295-4
Sarquis, F.J., Tetsuo, P., Vasconcelos, A., Pordeus, F., Roche, D., Romeo, C., Ae, RPassos-Bueno, M.R. (2011). Using a combination of MLPA kits to detect chromosomal imbalances in patients with multiple congenital anomalies and mental retardation is a valuable choice for developing countries. European Journal of Medical Genetics, 54(4), e425-e432. doi: 10.1016/j.ejmg.2011.03.007
Strauss, W. (2001). Preparation of genomic DNA from mammalian tissue. Current protocols in molecular biology, Chapter 2, Unit2.2. doi: 10.1002/0471142727.mb0202s42
Sun, M. L., Zhang, H. G., Liu, X. Y., Yue, F. G., Jiang, Y. T., Li, S. B. y Liu, R. Z. (2020). Prenatal diagnosis and molecular cytogenetic characterization of a small supernumerary marker chromosome (sSMC) inherited from her mosaic sSMC(15) mother and a literature review. Taiwanese journal of obstetrics & gynecology, 59(6), 963–967. doi: 10.1016/j.tjog.2020.09.030
Tan, E., Yong, M., Lim, E., Li, Z., Brett, M. y Tan, E. (2014). Chromosome 15q11-q13 copy number gain detected by array-CGH in two cases with a maternal methylation pattern. Molecular Cytogenetics, 7(1), 32.doi: 10.1186/1755-8166-7-32
Tomac, V., Pušeljić, S., Škrlec, I., Anđelić, M., Kos, M. y Wagner, J. (2017). Etiology and the Genetic Basis of Intellectual Disability in the Pediatric Population. Southeastern European Medical Journal, 1(1), 144-153. doi: 10.26332/seemedj.v1i1.28
Varshney, A., Kyono, Y., Elangovan, V.R., Wang, C., Erdos, M. R., Narisu, N., Parker, S.C. (2021). A transcription start site map in human pancreatic islets reveals functional regulatory signatures. Diabetes, 70(7), 1581-1591. Doi:10.2337/db20-1087
Vindas-Smith, R., Cuenca, P., Brenes, F. y Castro, I. (2011). Tamizaje mediante inmunohistoquímica del síndrome del cromosoma X frágil en una población de niños y adolescentes costarricenses. Acta Médica Costarricense, 53(2), 93-98. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0001-60022011000200007
Vissers, L., Gilissen, C. y Veltman, J. (2016). Genetic studies in intellectual disability and related disorders. Nature Reviews Genetics, 17(1), 9-18. doi: 10.1038/nrg3999
Watson, C., T. Marques-Bonet, A. Sharp. y H. Mefford. (2014). The Genetics of Microdeletion and Microduplication Syndromes: An Update. Annual review of genomics and human genetics, 15, 215–244. doi:10.1146/annurev-genom-091212-153408
Wellcome Trust Sanger Institute. (s.f.). DECIPHER. Database of Genomic Variation and Phenotype in Humans Using Ensemble Resources. https://decipher.sanger.ac.uk
Wu, X., An, G., Xie, X., Su, L., Cai, M., Chen, X., ... Xu, L. (2020). Chromosomal microarray analysis for pregnancies with or without ultrasound abnormalities in women of advanced maternal age. Journal of clinical laboratory analysis, 34(4), e23117. doi: 10.1002/jcla.23117