Resumen
Ensamblamos una serie de casos sospechosos de síndrome congénito por Zika en un hospital de maternidad en Tuxtla Gutiérrez, Chiapas, México, para evaluar por qué no fueron notificados y explorar la hipótesis de enfermedad por Zika incrementada por anticuerpos anti-dengue. En un total de 13 casos sospechosos revisamos registros clínicos e imágenes, entrevistas que revelaron que solamente uno de los 12 fue confirmado por laboratorio, porque en los demás no se recolectaron especímenes adecuados de los neonatos como lo requería la definición de caos. Encontramos 1) microcefalia, 2) hipoplasia y adelgazamiento de las estructuras cerebrales, 3) malformaciones múltiples, 4) calcificaciones o quistes, 5) meningocele/encefalocele, y 6) hidrocefalia en 100%, 76.9%, 38.5%, 38.5%, 30.8%, y 23.1%, en ese orden. Los casos se aglutinaron geográficamente y 77% ocurrieron entre Mayo del 2016 y Marzo del 2017, y recordaban que o un profesional de la salud les dijo que tuvieron fiebre por Zika. Utilizando como grupo de referencia a mujeres que tuvieron recién nacidos normales en el mismo hospital, y una prueba de neutralización por reducción de placa al 80% para los virus dengue 1 y 2, encontramos un incremento de casi 4 veces en el riesgo de síndrome congénito por Zika para aquellos con altos niveles de anticuerpos anti-dengue 1 compardo con anticuerpos al dengue 2 (cociente de suertes = 3.6; intervalo de confianza del 95%: 0.7, 20.5), alcanzando solamente una significancia estadística limítrofe. La definición de caso del síndrome congénito por Zika durante la pandemia probablemente necesitaba ser más simple para ganar sensibilidad.
Citas
Ansari, M. Z., Shope, R. E., & Malik, S. (1993). Evaluation of vero cell lysate antigen for the ELISA of flaviviruses. Journal of Clinical Laboratory Analysis, 7(4), 230–237. https://doi.org/10.1002/jcla.1860070408
Brown, J. A., Singh, G., Acklin, J. A., Lee, S., Duehr, J. E., Chokola, A. N., Frere, J. J., Hoffman, K. W., Foster, G. A., Krysztof, D., Cadagan, R., Jacobs, A. R., Stramer, S. L., Krammer, F., García-Sastre, A., & Lim, J. K. (2019). Dengue Virus Immunity Increases Zika Virus-Induced Damage during Pregnancy. Immunity, 50(3), 751–762.e5. https://doi.org/10.1016/j.immuni.2019.01.005
Cao-Lormeau, V. M., Blake, A., Mons, S., Lastère, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., Larre, P., Vial, A. L., Decam, C., Choumet, V., Halstead, S. K., Willison, H. J., Musset, L., Manuguerra, J. C., Despres, P., Fournier, E., Mallet, H. P., … Ghawché, F. (2016). Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet (London, England), 387(10027), 1531–1539. https://doi.org/10.1016/S0140-6736(16)00562-6
Cardenas, V. M., Paternina-Caicedo, A. J., & Salvatierra, E. B. (2019). Underreporting of Fatal Congenital Zika Syndrome, Mexico, 2016-2017. Emerging infectious diseases, 25(8), 1560–1562. https://doi.org/10.3201/eid2508.190106
Carvalho, M. S., Freitas, L. P., Cruz, O. G., Brasil, P., & Bastos, L. S. (2020). Association of past dengue fever epidemics with the risk of Zika microcephaly at the population level in Brazil. Scientific Reports, 10(1), 1752. https://doi.org/10.1038/s41598-020-58407-7
Castanha, P., Souza, W. V., Braga, C., Araújo, T., Ximenes, R., Albuquerque, M., Montarroyos, U. R., Miranda-Filho, D. B., Cordeiro, M. T., Dhalia, R., Marques, E., Jr, Rodrigues, L. C., Martelli, C., & Microcephaly Epidemic Research Group (2019). Perinatal analyses of Zika- and dengue virus-specific neutralizing antibodies: A microcephaly case-control study in an area of high dengue endemicity in Brazil. PLoS Neglected Tropical Diseases, 13(3), e0007246. https://doi.org/10.1371/journal.pntd.0007246
Dantés, H. G., Farfán-Ale, J. A., & Sarti, E. (2014). Epidemiological trends of dengue disease in Mexico (2000-2011): a systematic literature search and analysis. PLoS Neglected Tropical Diseases, 8(11), e3158. https://doi.org/10.1371/journal.pntd.0003158
Gregg N. M. (1991). Congenital cataract following German measles in the mother. 1941. Epidemiology and infection, 107(1). https://doi.org/10.1017/s0950268800048627
Ellington, S. R., Devine, O., Bertolli, J., Martinez Quiñones, A., Shapiro-Mendoza, C. K., Perez-Padilla, J., Rivera-Garcia, B., Simeone, R. M., Jamieson, D. J., Valencia-Prado, M., Gilboa, S. M., Honein, M. A., & Johansson, M. A. (2016). Estimating the Number of Pregnant Women Infected With Zika Virus and Expected Infants With Microcephaly Following the Zika Virus Outbreak in Puerto Rico, 2016. JAMA Pediatrics, 170(10), 940–945. https://doi.org/10.1001/jamapediatrics.2016.2974
Halai, U. A., Nielsen-Saines, K., Moreira, M. L., de Sequeira, P. C., Junior, J., de Araujo Zin, A., Cherry, J., Gabaglia, C. R., Gaw, S. L., Adachi, K., Tsui, I., Pilotto, J. H., Nogueira, R. R., de Filippis, A., & Brasil, P. (2017). Maternal Zika Virus Disease Severity, Virus Load, Prior Dengue Antibodies, and Their Relationship to Birth Outcomes. Clinical Infectious Diseases, 65(6), 877–883. https://doi.org/10.1093/cid/cix472
Halstead S. B. (2017). Biologic Evidence Required for Zika Disease Enhancement by Dengue Antibodies. Emerging Infectious Diseases, 23(4), 569–573. https://doi.org/10.3201/eid2304.161879
Hernández-Ávila, J. E., Palacio-Mejía, L. S., López-Gatell, H., Alpuche-Aranda, C. M., Molina-Vélez, D., González-González, L., & Hernández-Ávila, M. (2018). Zika virus infection estimates, Mexico. Bulletin of the World Health Organization, 96(5), 306–313. https://doi.org/10.2471/BLT.17.201004
Innis, B. L., Nisalak, A., Nimmannitya, S., Kusalerdchariya, S., Chongswasdi, V., Suntayakorn, S., Puttisri, P., & Hoke, C. H. (1989). An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. The American Journal of Tropical Medicine and Hygiene, 40(4), 418–427. https://doi.org/10.4269/ajtmh.1989.40.418
Katzelnick, L. C., Montoya, M., Gresh, L., Balmaseda, A., & Harris, E. (2016). Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 728–733. https://doi.org/10.1073/pnas.1522136113
Kulldorff M (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods; 26, 1481-1496.
Masel, J., McCracken, M. K., Gleeson, T., Morrison, B., Rutherford, G., Imrie, A., Jarman, R. G., Koren, M., & Pollett, S. (2019). Does prior dengue virus exposure worsen clinical outcomes of Zika virus infection? A systematic review, pooled analysis and lessons learned. PLoS Neglected Tropical Diseases, 13(1), e0007060. https://doi.org/10.1371/journal.pntd.0007060.
Mocelin, H., do Prado, T. N., Freitas, P., Bertolde, A. I., Perez, F., Riley, L. W., & Maciel, E. (2019). Variação na detecção da síndrome congênita do Zika em função de alterações em protocolos [Variations in the detection of congenital Zika syndrome associated with changes in protocolsVariación de la detección del síndrome congénito por el virus del Zika en función de los cambios de los protocolos]. Revista Panamericana de Salud Pública = Pan American Journal of Public Health, 43, e79. https://doi.org/10.26633/RPSP.2019.79
Morens, D. M., Halstead, S. B., Repik, P. M., Putvatana, R., & Raybourne, N. (1985). Simplified plaque reduction neutralization assay for dengue viruses by semimicro methods in BHK-21 cells: comparison of the BHK suspension test with standard plaque reduction neutralization. Journal of Clinical Microbiology, 22(2), 250–254. https://doi.org/10.1128/jcm.22.2.250-254.1985
Morrison, A. C., Minnick, S. L., Rocha, C., Forshey, B. M., Stoddard, S. T., Getis, A., Focks, D. A., Russell, K. L., Olson, J. G., Blair, P. J., Watts, D. M., Sihuincha, M., Scott, T. W., & Kochel, T. J. (2010). Epidemiology of dengue virus in Iquitos, Peru 1999 to 2005: interepidemic and epidemic patterns of transmission. PLoS neglected tropical diseases, 4(5), e670. https://doi.org/10.1371/journal.pntd.0000670
Pan American Health Organization / World Health Organization. (2022, March 25). Health Information Platform for the Americas. Zika cumulative case report. https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=cumulative-%20cases-pdf-8865&alias=43296-zika-cumulative-cases-4-january-2018-296&Itemid=270&lang=en
Pan American Health Organization. (2022, March 25). Zika Resources. Case definition. https://www3.paho.org/hq/index.php?option=com_content&view=article&id=11117:zika-resources-case-definitions&Itemid=41532&lang=en
Papageorghiou, A. T., Kennedy, S. H., Salomon, L. J., Altman, D. G., Ohuma, E. O., Stones, W., Gravett, M. G., Barros, F. C., Victora, C., Purwar, M., Jaffer, Y., Noble, J. A., Bertino, E., Pang, R., Cheikh Ismail, L., Lambert, A., Bhutta, Z. A., Villar, J., & International Fetal and Newborn Growth Consortium for the 21(st) Century (INTERGROWTH-21(st)) (2018). The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care. American Journal of Obstetrics and Gynecology, 218(2S), S630–S640. https://doi.org/10.1016/j.ajog.2018.01.011
Pedroso, C., Fischer, C., Feldmann, M., Sarno, M., Luz, E., Moreira-Soto, A., Cabral, R., Netto, E. M., Brites, C., Kümmerer, B. M., & Drexler, J. F. (2019). Cross-Protection of Dengue Virus Infection against Congenital Zika Syndrome, Northeastern Brazil. Emerging Infectious Diseases, 25(8), 1485–1493. https://doi.org/10.3201/eid2508.190113
Quandelacy, T. M., Healy, J. M., Greening, B., Rodriguez, D. M., Chung, K. W., Kuehnert, M. J., Biggerstaff, B. J., Dirlikov, E., Mier-Y-Teran-Romero, L., Sharp, T. M., Waterman, S., & Johansson, M. A. (2021). Estimating incidence of infection from diverse data sources: Zika virus in Puerto Rico, 2016. PLoS Computational Biology, 17(3), e1008812. https://doi.org/10.1371/journal.pcbi.1008812
Rathore, A., Saron, W., Lim, T., Jahan, N., & St John, A. L. (2019). Maternal immunity and antibodies to dengue virus promote infection and Zika virus-induced microcephaly in fetuses. Science Advances, 5(2), eaav3208. https://doi.org/10.1126/sciadv.aav3208
Rico-Hesse R. (2003). Microevolution and virulence of dengue viruses. Advances in Virus Research, 59, 315–341. https://doi.org/10.1016/s0065-3527(03)59009-1
Santiago, G. A., Sharp, T. M., Rosenberg, E., Sosa Cardona, I. I., Alvarado, L., Paz-Bailey, G., & Muñoz-Jordán, J. L. (2019). Prior Dengue Virus Infection Is Associated With Increased Viral Load in Patients Infected With Dengue but Not Zika Virus. Open Forum Infectious Diseases, 6(7), ofz320. https://doi.org/10.1093/ofid/ofz320
Serrano-Collazo, C., Pérez-Guzmán, E. X., Pantoja, P., Hassert, M. A., Rodríguez, I. V., Giavedoni, L., Hodara, V., Parodi, L., Cruz, L., Arana, T., Martínez, M. I., White, L., Brien, J. D., de Silva, A., Pinto, A. K., & Sariol, C. A. (2020). Effective control of early Zika virus replication by Dengue immunity is associated to the length of time between the 2 infections but not mediated by antibodies. PLoS Neglected Tropical Diseases, 14(5), e0008285. https://doi.org/10.1371/journal.pntd.0008285
Shapiro-Mendoza, C. K., Rice, M. E., Galang, R. R., Fulton, A. C., VanMaldeghem, K., Prado, M. V., Ellis, E., Anesi, M. S., Simeone, R. M., Petersen, E. E., Ellington, S. R., Jones, A. M., Williams, T., Reagan-Steiner, S., Perez-Padilla, J., Deseda, C. C., Beron, A., Tufa, A. J., Rosinger, A., Roth, N. M., … Zika Pregnancy and Infant Registries Working Group (2017). Pregnancy Outcomes After Maternal Zika Virus Infection During Pregnancy - U.S. Territories, January 1, 2016-April 25, 2017. MMWR. Morbidity and Mortality Weekly Report, 66(23), 615–621. https://doi.org/10.15585/mmwr.mm6623e1
Zárate-Aquino, M. L., del Río-Zolezzi, A., & Gómez-Dantés, H. (1995). El diagnóstico del dengue en México: actualidad y perspectivas [The diagnosis of dengue in Mexico: an update and outlook]. Salud publica de Mexico, 37 Suppl, S21–S28.