Población y Salud en Mesoamérica ISSN electrónico: 1659-0201

OAI: https://revistas.ucr.ac.cr/index.php/psm/oai
Impacto de COVID-19 en la mortalidad de personas mayores de la población de Córdoba, Argentina. Análisis preliminar de los dos primeros años de la pandemia
PDF

Palabras clave

COVID-19
mortalidad
personas mayores
COVID-19 - MORTALIDADE - IDOSOS
COVID-19
mortality
elderly

Cómo citar

Pelaez, E., Mariano González, L. ., & Acosta, L. D. . (2024). Impacto de COVID-19 en la mortalidad de personas mayores de la población de Córdoba, Argentina. Análisis preliminar de los dos primeros años de la pandemia. Población Y Salud En Mesoamérica, 22(1). https://doi.org/10.15517/psm.v22i1.57178

Resumen

Introducción: El trabajo analiza el impacto de la pandemia por COVID-19 en las personas mayores de Córdoba, Argentina, durante 2020 y 2021, mediante la medición del exceso de defunciones (ED) y el cambio de esperanza de vida (EV). Metodología: Se utilizaron datos del Ministerio de Salud Nacional sobre las defunciones para el período 2017-2020. Se calcularon tablas de vida para el trienio 2017-2019 y para 2020 y 2021. Por último, se calculó la descomposición de las diferencias de EV en 2020 y 2021. Resultados: En 2020 hubo un 10,3 % de exceso de defunciones y un 25,5 % en 2021, mayor en varones. El ED se concentró en personas mayores de 60 años, aunque en 2021 fue importante la mortalidad de adultos jóvenes. En 2020, la tasa de ED en varones mayores de 80 años triplicó al grupo de 60-79 años y hubo un marcado sesgo entre varones y mujeres. En 2021, disminuyeron las diferencias entre edades y sexos, aunque se mantuvo la mayor tasa para varones mayores de 80 años. En 2020, las muertes por COVID-19 explicaron el 74,2 % y el 102,4 % del ED de varones y mujeres, respectivamente; en 2021, explicaron el 60,2 % y el 57,7 %, respectivamente. La pérdida de EV en 2020 fue de un 0,83 año en varones y un 0,26 año en mujeres; en 2021, fue de 2,73 años y 2,25 años, respectivamente. En los varones mayores, la disminución de EV se concentró en enfermedades infecciosas y COVID-19. Conclusiones: El conocimiento del impacto de la pandemia sobre personas mayores ofrece evidencias valiosas para la planificación de políticas sanitarias.

https://doi.org/10.15517/psm.v22i1.57178
PDF

Citas

Aburto, J., Schöley, J., Kashnitsky, I., Zhang, L., Rahal, C., Missov, T. I., Mills, M. C., Dowd, J. B. y Kashyap, R. (2022a). Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: a population-level study of 29 countries. International Journal of Epidemiology, 51(1), 63–74. https://doi.org/10.1093/ije/dyab207

Aburto, J., Schöley, J., Kashnitsky, I. y Kashyap, R. (2022b). Life expectancy declines in Russia during the COVID-19 pandemic in 2020. International Journal of Epidemiology, 51(5), 1695-1697. https://doi.org/10.1093/ije/dyac055

Aburto J., Tilstra, A. M., Floridi, G. y Dowd, J. B. (2022c). Significant impacts of the COVID-19 pandemic on race/ethnic differences in USA mortality. medRxiv preprint. https://doi.org/10.1101/2022.04.04.22273385

Alaran, A. J., Adebisi, Y. A., Badmos, A., Khalid-Salako, F., Gaya, S.K., Ilesanmi, E. B., Olaoye, D. Q., Bamisaiye, A. y Lucero-Prisno III, D. E. (2021). Uneven power dynamics must be levelled in COVID-19 vaccines access and distribution. Public Health in Practice, 2, 100096. https://doi.org/10.1016/j.puhip.2021.100096

Alexandar, S., Ravisankar, M., Kumar, R. S. y Jakkan, K. (2021). A comprehensive review on Covid-19 Delta variant. International Journal of Pharmacology and Clinical Research (IJPCR), 5(83-85), 7.

Armocida, B., Formenti, B., Ussai, S., Palestra, F. y Missoni, E. (2020). The Italian health system and the COVID-19 challenge. The Lancet Public Health, 5(5), e253. https://doi.org/10.1016/S2468-2667(20)30074-8

Canudas-Romo, V., Houle, B. y Adair, T. (2022). Quantifying impacts of the COVID-19 pandemic on Australian life expectancy. International Journal of Epidemiology, 51(5), 1692–1695. https://doi.org/10.1093/ije/dyab273

Castro, M.C., Gurzenda, S., Turra, C. M., Kim, S., Andrasfay, T. y Goldman, N. (2022). COVID-19 is not an Independent Cause of Death. Demography, 60(2), 343-349. https://doi.org/10.1101%2F2022.06.01.22275878

CDC COVID-19 Response Team. (2020). Geographic Differences in COVID-19 Cases, Deaths, and Incidence - United States, February 12-April 7, 2020. Morbidity and Mortality Weekly Report, 69(15), 465–471. https://doi.org/10.15585/mmwr.mm6915e4

Center of Disease Control

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, M., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X. y Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

Del Popolo, F. y Bay, G. (2021). Las estadísticas de nacimientos y defunciones en América Latina con miras al seguimiento de la Agenda 2030 para el Desarrollo Sostenible y del Consenso de Montevideo sobre Población y Desarrollo. Comisión Económica para América Latina. https://www.cepal.org/es/publicaciones/46850-estadisticas-nacimientos-defunciones-america-latina-miras-al-seguimiento-la

Figueroa, J. D., Brennan, P., Theodoratou, E., Poon, M., Purshouse, K., Jin, K., Dunlop, M., Hall, P., Cameron, D. y Sudlow, C. (2020). Distinguishing between direct and indirect consequences of covid-19. http://dx.doi.org/10.1136/bmj.m2377

Helleringer, S. y Lanza Queiroz, B. (2022). Commentary: Measuring excess mortality due to the COVID-19 pandemic: progress and persistent challenges. International Journal of Epidemiology, 51(1), 85–87. https://doi.org/10.1093/ije/dyab260

Higgins, V., Sohaei, D., Diamandis, E. P. y Prassas, I. (2021). COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci., 58(5), 297-310. https://doi.org/10.1080/10408363.2020.1860895

Instituto Nacional de Estadística y Censos. (2010). Censo Nacional de Población, Hogares y Vivienda 2010. https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135

Instituto Nacional de Estadística y Censos. (2013). Proyecciones provinciales de población por sexo y grupo de edad 2010-2014. https://www.indec.gob.ar/ftp/cuadros/publicaciones/proyecciones_prov_2010_2040.pdf

John Hopkins University. (2022). Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html

Karlinsky, A. y Kobak, D. (2021). Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. Epidemiology and Global Health, 10, e69336. https://doi.org/10.7554/eLife.69336

Kiang, M. V., Irizarry, R. A., Buckee, C. O., y Balsari, S. (2020). Every body counts: measuring mortality from the COVID-19 pandemic. Annals of internal medicine, 173(12), 1004-1007.

Konstantinoudis, G., Cameletti, M., Gómez-Rubio, V., Gómez, I. L., Pirani. M., Baio. G., Larrauri, A., Riou, J., Egger, M., Vineis, P. y Blangiardo, M. (2022). Regional excess mortality during the 2020 COVID-19 pandemic in five European countries. Nat Commun, 13, 482. https://doi.org/10.1038/s41467-022-28157-3

Krelle, H., Barclay, C. y Tallack, C. (2020). Understanding excess mortality: what is the fairest way to compare COVID-19 deaths internationally?. The Health Foundation. Recuperado el 26 de agosto de 2022 de https://www.health.org.uk/news-andcomment/charts-and-infographics/understandingexcess-mortality-the-fairest-way-to-make-international-comparisons.

Lu, H., Stratton, C. W. y Tang, Y. W. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology, 92(4), 401–402. https://doi.org/10.1002/jmv.25678

Marques, D. H. F., y Máximo, G. (2022). Losses in Life Expectancy at Birth from 2020: The Impact of COVID-19 on the Structure of Mortality by Sex and Age in Brazil. En Quantitative Methods in Demography (pp. 47-61). Springer, Cham.

Ministerio de Salud de la Nación. (2022). Monitor de datos COVID-19. https://www.argentina.gob.ar/salud/coronavirus-COVID-19/sala-situacion

Müller, O., Neuhann, F., y Razum, O. (2020). Epidemiologie und Kontrollmaßnahmen bei COVID-19. Deutsche Medizinische Wochenschrift, 145(10), 670–674. https://doi.org/10.1055/a-1162-1987

Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D., y de Wit, E. (2020). A Novel Coronavirus Emerging in China-Key Questions for Impact Assessment. New England Journal of Medicine, 382(8), 692–694. https://doi.org/10.1056/nejmp2000929

Muntaner, C., Gunn, V., y Prins, S. J. (2021). Sobre la muerte por desesperación de Case y Deaton: implicaciones para la investigación sobre desigualdades en salud en la era post-COVID-19. Gaceta Sanitaria, 35(5), 409-410.

Paul, P., El-Naas, A., Hamad, O., Salameh, M. A., Mhaimeed, N., Laswi, I., Abdelati, A. A., AlAnni, J., Khanjar, B., Al-Ali, D., Pillai, K. V., Elshafeey, A., Alroobi, H., Burney, Z., Mhaimeed, O., Bhatti, M., Sinha, P., Almasri, M., Aly, A., Bshesh, K., y Chamseddine, R. (2023) Effectiveness of the pre-Omicron COVID-19 vaccines against Omicron in reducing infection, hospitalization, severity, and mortality compared to Delta and other variants: A systematic review. Human Vaccines & Immunotherapeutics, 19, 1. https://doi.org/10.1080/21645515.2023.2167410

Peláez, E., Acosta, L. D. y González, L. M. (2022). Análisis preliminar del impacto de la pandemia del COVID-19 en la Esperanza de Vida en la provincia de Córdoba, Argentina en 2020. Notas de Población, 49(114), 105-128.

Podestá, M. A., Valli, F., Galassi, A., Cassia, M. A., Ciceri, P., Barbieri, L., Carugo, S. y Cozzolino, M. (2021). COVID-19 in Chronic Kidney Disease: The Impact of Old and Novel Cardiovascular Risk Factors. Blood Purif., 50(6), 740-749. https://doi.org/10.1159/000514467

Rearte, A., Moisés, M. S., Rueda, D. V., Laurora, M. A., Flamenco, M., Pennini, V. A., Giovacchini, C. M., Guevel, C. y Vizzoti, C. (2021). Exceso de mortalidad por todas las causas en el contexto de la pandemia del COVID-19 en Argentina, 2020. Revista Argentina de Salud Pública, 13(Supl. COVID-19), e36. https://rasp.msal.gov.ar/index.php/rasp/article/view/672

Ribotta, B. (2013). Hacia el seguimiento de los determinantes sociales de la salud: alcances y limitaciones de las estadísticas de defunción en la Argentina (2001-2009). Revista Facultad Nacional de Salud Pública, 31(supl. 1), S149-S159. https://www.redalyc.org/articulo.oa?id=12028727015

Scquizzato, T., Landoni, G., Paoli, A., Lembo, R., Fominskiy, E., Kuzovlev, A., Likhvantsev V., y Zangrillo, A. (2020). Effects of COVID-19 pandemic on out-of-hospital cardiac arrests: A systematic review. Resuscitation, 157, 241-247.

United States Census Bureau. (2014). Population Analysis System (PAS) Software. https://www.census.gov/data/software/pas.html

Wang, B., Li, R., Lu, Z. y Huang, Y. (2020). Does comorbidity increase the risk of patients with COVID-19. Aging, 12(7), 6049–6057.

Wang, H., Paulson, K. R., Pease, S. A., Watson, S., Comfort, H., Zheng, P., Aravkin, A., Bisignano, C., Barber, R., Alam, T., Fuller, J., May, E., Jones, D. P., Frisch, M., Abbafati, C., Adolph, C., Allorant, A., Amlag, J., Bang-Jensen, B., Bertolacci, G. (2022). Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. The Lancet, 399(10334), 1513-1536. https://doi.org/10.1016/s0140-6736(21)02796-3

Yuan, P., Ai, P., Liu, Y., Ai, Z., Wang, Y., Cao, W., Xia, X., y Zheng, J. C. (2020). Safety, Tolerability, and Immunogenicity of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. MedRxiv. https://doi.org/10.1101/2020.11.03.20224998

Zhang, J., Dong, X., Liu, G. y Gao, Y. (2022). Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clinical Reviews in Allergy & Immunology, 64, 90-107. https://doi.org/10.1007/s12016-022-08921-5

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Enrique Pelaez, Leandro Mariano González, Laura Débora Acosta

Descargas

Los datos de descargas todavía no están disponibles.