Abstract
Rasch models are widely used for the analysis of educational data. In practice, estimates of difficulties of items and abilities of examinees are reported. However, the meaning of the terms “difficulty” and “abilities” are never made explicit. The meaning of these terms does not depend on the estimations; they should be interpreted with respect to the eventual meaning of both item difficulties and individual abilities. This paper shows that the meaning of the terms “difficulty” and “ability” depends on the way in which the Rasch model is specified. In the psychometric literature, Rasch models are specified in two different ways: one specifies the observable only, whereas the other one specifies both observable and unobservable. The first specification is due to Rasch himself, the second one is due to Lord.
References
Cizek, G. (2012). Setting Performance Standards: Foundations, Methods, and Innovations. Routledge.
Embretson, S. E. & Reise, S. P. (2000). Item Response Theory for Psycholigists. New Jersey: Lawrence Erlbaum Associates, Publishers.
Koopmans, T. J. & Reiersol, O. (1950). The identification of structural characteristics. The Annals of Mathematical Statistics, 21, 165-181.
Laplace, P.S. (1774). Mémoire sur la probabilité des cause par les événements. Paris: Académie Royal des Sciences de Paris.
Lazarsfeld, P. F. (1954). A conceptual introduction to latent structure analysis. In: P. F.
Lazarsfeld (Ed.), Mathematical Thinking in the Social Sciences, pp. 349-387. New York: Russell & Russell.
Lord, F. (1952). A Theory of Test Scores. Psychomettric Monograph No. 7.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. The Danish Institute for Educational Research (Expanded Edition, 1980). Chicago: The University Chicago Press.
San Martín, E. (2015). Identification of Item Response Theory Models. In: R.K. Hambleton & W. van der Linden (Eds.), Handbook of Item Response Theory: Models, Statistical Tools, and Applications, Volumen 2, Chapter 8. En Imprenta.
San Martín, E. & De Boeck, P. (2015). What do you mean by a difficult item? On the interpretation of the difficulty parameter in Rasch models. In: Roger E. Millsap, Daniel M. Bolt, L. Andries van der Ark, Wen-Chung Wang (Eds.), Quantitative Psychology Research, Springer Proceedings in Mathematics & Statistics, 89, Chapter 1.
San Martín, E., González, J. & Tuerlinckx, F. (2009). Identified Parameters, Parameters of Interest and Their Relationships. Measurement: Interdisciplinary Research & Perspective, 7, 97-105.
San Martín, E., González, J. & Tuerlinckx, F. (2014). On the unidentifiability of the fixed-effects 3PL model. Psychometrika, 80, 450-467. DOI: 10.1007/S11336-014-9404-2.
San Martín, E., Jara, A., Rolin, J.-M. & Mouchart, M. (2011). On the Bayesian nonparametric generalization of IRT-type models. Psychometrika, 76, 385-409.
San Martín, E. & Rolin, J. –M. (2007). Identifiability and Estimability of Parametric Rasch-Type Models. Discussion Paper 0702, Institut de Statistique, Université catholique de Louvain, Belgium. Disponible en http://sites.uclouvain.be/IAP-Stat-Phase-V-VI/ISBApub/dp2007/DP0702.pdf.
San Martín, E. & Rolin, J. –M. (2013). Identification of parametric Rasch-type models. Journal of Statistical Planning and Inference, 143, 116-130.
San Martín, E., Rolin, J.-M. & Castro, M. (2013). Identification of the 1PL model with guessing parameter: parametric and semi-parametric results. Psychometrika, 78, 341-379