Vegetable oils on in vitro fatty acids and methane production in dairy cows.


  • Esperanza Prieto-Manrique Universidad de Sucre. Facultad de Ciencias Agropecuarias.
  • Julio Ernesto Vargas-Sánchez Universidad de Caldas. Facultad de Ciencias Agropecuarias.
  • Joaquín Angulo-Arizala Universidad de Antioquia. Facultad de Ciencias Agrarias.
  • Liliana Mahecha Ledesma Universidad de Antioquia. Facultad de Ciencias Agrarias.



conjugated linoleic acid, trans vaccenic acid, ruminal fermentation, dairy cattle under grazing, silvopastoral system.


The aim of this study was to evaluate the effect of the addition of vegetable oils to representative diets of dairy cows under grazing, on the in vitro fatty acids, ruminal fermentation and methane production. The research was conducted in the laboratory NUTRILAB-GRICA, belonging to the Faculty of Agricultural Sciences, University of Antioquia, Medellin, Colombia, in August 2013. The technique of in vitro gas production was used. In four diets (two Cynodon plectostachyus monoculture and two intensive silvopastoral system with Leucaena leucocephala), the addition of three vegetable oils (sun ower, linseed and palm) at 2 and 4% of MS was assessed using a factorial design completely random 4x3x2. In all diets, supplementation with sun ower oil increased the content of linoleic acid (C18: 2 c9, 12), conjugated linoleic acid (CLA-c9t11 ) and transvaccénico acid (ATV, C18:1 t11) after fermentation (p<0.0001), decreased by 2,4 and 0.9% DM digestibility regarding palm oil (p<0.05) and linseed oil (p>0.05). No oil affected fermentation kinetics, pH, total of volatile fatty acid (VFA), VFA ratio or methane production. 


Download data is not yet available.


Amaro, P., M.R.G. Maia, R.J. Dewhurst, A.J.M. Fonseca, and A.R.J. Cabrita. 2012. Effects of increasing levels of stearidonic acid on methane production in a rumen in vitro system. Anim. Feed Sci. Technol. 173:252-260.

AOAC (Association of Of cial Analytical Chemists). 1999. Of cial methods of analysis of AOAC International. 16th ed. AOAC International, Gaithersburg, MD, USA.

Beauchemin, K.A., M. Kreuzer, F. O’Mara, and T.A. McAl- lister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48(2):21-27.

Beauchemin, K.A., S.M. McGinn, C. Benchaar, and L. Holtshausen. 2009. Crushed sun ower, ax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 92:2118-2127.

Beauchemin, K.A., S.M. McGinn, T.F. Martinez, and T.A. McAllister. 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85:1990-1996.

Bauman, D., and J. Griinari. 2001. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest. Prod. Sci. 70:15-29.

Belury, M.A. 2002. Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu. Rev. Nutr. 22:505-531.

Benchaar, C., G.A. Romero-Pérez, P.Y. Chouinard, F. Hassanat, M. Eugene, H.V. Petit, and C. Côrtes. 2012. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J. Dairy Sci. 95:4578-4590.

Bichi, E., P.G. Toral, G. Hervás, P. Frutos, P. Gómez-Cortés, M. Juárez, and M.A. De la Fuente. 2012. Inhibition of Δ9-desaturase activity with sterculic acid: effect on the endogenous synthesis of cis-9 18:1 and cis-9, trans-11 18:2 in dairy sheep. J. Dairy Sci. 95:5242-5252.

Boerman, J.P., and A.L. Lock. 2014. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle. J. Dairy Sci. 97:7031-7042.

Broudiscou, L., S. Pochet, and C. Poncet. 1994. Effect of linseed oil supplementation on feed degradation and microbial synthesis in the rumen of ciliate-free and refaunated sheep. Anim. Feed Sci. Technol. 49:189-202.

Castillo-Vargas, J.A. 2012. Cinética de biohidrogenación in vitro de ácidos grasos poliinsaturados en uido ruminal. Tesis M.Sc., Universidad Nacional de Colombia, Bogotá, COL.

Chilliard, Y., A. Ferlay, J. Rouel, and G. Lamberet. 2003. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 86:1751-1770.

Chilliard, Y., F. Glasser, A. Ferlay, L. Bernard, J. Rouel, and M. Doreau. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109:828-855.

Cieslak, A., M. Szumacher-Strabel, E. Szymankiewicz, M. Piękniewski, P. Oleszak, L. Siwiński, and A. Potkański. 2006. Coconut oil reduces protozoa count and methane release during fermentation in a Rusitec system. J. Anim. Feed Sci. 15:19-22.

Cieslak, A., Z. Varadyova, S. Kisidayova, D. Jalc, and M. Szumacher-Strabel. 2013. Effect of diets with fruit oils supplements on rumen fermentation parameters, fatty acid composition and methane production in vitro. J. Anim. Feed Sci. 22:26-34.

CNL (Consejo Nacional Lácteo). 2010. Acuerdo de competitividad de la cadena láctea colombiana. CNL, Bogota, COL.

Collomb, M., H. Sollberger, U. Bütikofer, R. Sieber, W. Stoll, and W. Schaeren. 2004. Impact of a basal diet of hay and fodder beet supplemented with rapeseed, linseed and sun owerseed on the fatty acid composition of milk fat. Int. Dairy J. 14:549-559.

CONPES (Consejo Nacional de Política Económica y Social). 2010. Política nacional para mejorar la competitividad del sector lácteo colombiano. Documento 3675.

CONPES, Bogotá D.C., COL.

Cruz-Hernández, C., Z.Y. Deng, J.Q. Zhou, A.R. Hill, M.P. Yurawecz, P. Delmonte, M.M. Mossoba, M.E.R. Dugan, and J.K.G. Kramer. 2004. Methods for analysis of conjugated linoleic acids and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver- ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. J. Assoc. Off. Anal. Chem. 87:545-562.

Cruz-Hernández, C., J.K.G. Kramer, J. Kraft, V. Santercole, M. Or-Rashid, D. ZeYuan, M.E.R. Dugan, P. Delmonte, M.P. Yurawecz, O. Gudmundsen, M.W. Pariza, and S. Banni. 2006. Systematic analysis of trans and conjugated linoleic acids in the milk and meat of ruminants. In: M.P. Yurawecz et al., editors, Advances in conjugated linoleic acid research. AOCS Press, Champaign, IL, USA. p. 45-93.

Czerkawski, J.W. 1986. An introduction to rumen studies. Oxford, Pergamon, TUR.

Dhiman, T.R., L.D. Satter, M.W. Pariza, M.P. Galli, K. Albright, and M.X. Tolosa. 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci. 83:1016-1027.

Dohme, F., A. Machmüller, A. Wasserfallen, and M. Kreuzer. 2001. Ruminal methanogenesis as in uenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51.

Duque, M., R. Noguera, y L.F. Restrepo. 2009. Efecto de la adición de urea protegida y sin protección sobre la ciné- tica de degradación in vitro del pasto estrella (Cynodon nlem uensis) y caña de azúcar (Saccharum of cinarum). Livest. Res. Rural Dev. 21(4). lrrd21/4/duqu21058.htm (accesed 20 nov. 2014).

France, J., J. Dijkstra, M.S. Dhanoa, S. Lopez, and A. Bannink. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production pro les observed in vitro: derivation of models and other mathematical considerations. Br. J. Nutr. 83:143-150.

García-González, R., S. López, M. Fernández, and J.S. González. 2008. Dose-response effects of Rheum of cinale root and Frangulaalnus bark on ruminal methane production in vitro. Anim. Feed Sci. Technol. 145:319-334.

Gervais, R., J.W. McFadden, A.J. Lengi, B.A. Corl, and P.Y. Chouinard. 2009. Effects of intravenous infusion of t10, c12 18:2 on mammary lipid metabolism in lactating dairy cows. J. Dairy Sci. 92:5167-5177.

Harfoot, C.G., and G.P. Hazlewood. 1997. Lipid metabolism in the rumen. In: P. Hobson, and C.S. Stewart, editors, The rumen microbial ecosystem. 2nd ed. Blackie Academic and Professional Publishers, London, GBR. p. 382-426.

Harris, W.S. 2008. Linoleic acid and coronary heart disease. PLEFA 79:169-171.

Harvatine, K.J., and D.E. Bauman. 2006. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136:2468-2474.

Hervás, G., P. Luna, A.R. Mantecon, N. Castañares, P. Frutos, M.A. De la Fuente, and M. Juárez. 2006. Effect of sun ower oil on sheep milk production and composition, and in vitro rumen fermentation. In: European Federation for the Science and Technology of Lipids, editor, 4th Euro Fed Lipid Congress, “Fats, oils and lipids for a healthier future”. German Chemical Society (GDCh), Madrid, ESP. p. 571.

IPCC. 2007. Climate Change 2007: The physical science basis. In: S. Solomon et al., editors, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, GBR and NY, USA.

Jacob, A.B., V. Balakrishnan, and C. Kathirvelan. 2012. Effect of amount and source of vegetable oils in a high brous cattle diet on in vitro rumen fermentation, nutrient degradability and rumen cis-9, trans-11 CLA concentration. J. Appl. Anim. Res. 40:148-153.

Jalc, D., M. Certik, K. Kundrikova, and P. Namestkova. 2007. Effect of unsaturated C18 fatty acids (oleic, linoleic and alpha-linolenic acid) on ruminal fermentation and production of fatty acid isomers in an arti cial rumen. Vet. Med. - Czech 52(3):87-94.

Janssen, P. 2010. In uence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160:1-22.

Jayanegara, A., E. Wina, C.R. Soliva, S. Marquardt, M. Kreuzer, and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163: 231-243.

Jenkins, T.C., and B.F. Jenny. 1992. Nutrient digestion and lactation performance of dairy cows fed combinations of prilled fat and canola oil. J. Dairy Sci. 75:796–803.

Jenkins, T.C., R.J. Wallace, P.J. Moate, and E.E. Mosley. 2008. Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86:397-412.

Johnson, K.A., and D.E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.

Joyce, T., A.J. Wallace, S.N. McCarthy, and M.J. Gibney. 2009. Intakes of total fat, saturated, monounsaturated and polyunsaturated fatty acids in Irish children, teenagers and adults. Public Health Nutr. 12:156-165.

Kelly, M.L., J.R. Berry, D.A. Dwyer, J.M. Griinari, P.Y. Chouinard, M.E. Van Amburgh, and D.E. Bauman. 1998. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 128:881-885.

Khanal, R.C. 2004. Potential health bene ts of conjugated linoleic acid (CLA): a review. Asian Australas. J. Anim. Sci. 17:1315-1328.

Khanal, R.C., and K.C. Olson. 2004. Factors affecting conjugated linoleic acid (CLA) content in milk, meat, and egg: A review. Pakistan J. Nutr. 3:2-98.

Khiaosa-Ard, R., S.F. Bryner, M.R.L. Scheeder, H.R. Wettstein, F. Leiber, M. Kreuzer, and C.R. Soliva. 2009. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92:177-188.

Kraft, J., M. Collomb, P. Möckel, R. Sieber, and G. Jahreis. 2003. Differences in CLA isomer distribution of cow’s milk lipids. Lipids 38:657-664.

Lassey, K.R., M.J. Ulyatt, R.J. Martin, C.F. Walker, and I.D. Shelton. 1997. Methane emissions measured directly from grazing livestock in New Zealand. Atmos. Environ. 31:2905-2914.

Lee, Y.J., and T.C. Jenkins. 2011. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J. Nutr. 141:1445-1450.

Lock, A.L., and P.C. Garnsworthy. 2002. Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows’ milk. Anim. Sci. 74:163-176.

López, S., and C.J. Newbold. 2007. Analysis of methane. In: H.P.S. Makkar, and P.E. Vercoe, editors, Measuring Methane Production from Ruminants. IAEA, FAO, Springer, Dordrecht, HOL. p. 1-10.

Machmüller, A. 2006. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric. Ecosyst. Environ. 112:107-114.

Machmüller, A., D.A. Ossowski, M. Wanner, and M. Kreuzer. 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71:117-130.

Mahecha L., C.V. Durán, y M. Rosales. 2000. Análisis de la relación planta-animal desde el punto de vista nutricional en un sistema silvopastoril de Cynodon plectostachyus, Leucaena leucocephala y Prosopis juli ora en el Valle del Cauca. Acta Agronómica 50(1):59-70.

Makkar, H.P.S. 2003. Quanti cation of tannins in tree and shrub foliage. A laboratory manual. KluwerAcademic Publishers, HOL.

Martin, C., D.P. Morgavi, and M. Doreau. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Anim. 4:351-365.

Martin, C., D.P. Morgavi, M. Doreau, and J.P. Jouany. 2006. Comment réduire la production de méthane chez les ruminants? Fourrages 187:283-300.

Maxin, G., H. Rulquin, and F. Glasser. 2011. Response of milk fat concentration and yield to nutrient supply in dairy cows. Anim. 5:1299-1310.

McDougall, E.I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43:99-109.

Menke, K.H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen uid. Anim. Res. 28:7-55.

Milner, JA. 1999. Functional foods and health promotion. J. Nutr. 129:1395-1397.

Minieri, S., A. Buccioni, S. Rapaccini, A. Pezzati, D. Benvenuti, A. Serra, and M. Mele. 2014. Effect of Quebracho tannin extract on soybean and linseed oil biohydrogenation by solid associated bacteria: an in vitro study. Ital. J. Anim. Sci. 13:604-608.

Moss, A.R., J.P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49:231-253.

Murgueitio, E. 1999. Environmental and social adjustment of the cattle farming sector in Colombia. In: FAO, editor, World animal review. FAO, Roma, ITA. p. 2-15.

NRC (National Research Council). 2001. Nutrient requirements of dairy cattle. 7th rev. National Academy Press, WA, USA.

Pagiola, S., P. Agostini, J. Gobbi, C. de Haan, M. Ibrahim, E. Murgueitio, E. Ramírez, M. Rosales, and J.P. Ruíz. 2005. Paying for biodiversity conservation services - Experience in Colombia, Costa Rica, and Nicaragua. Mt. Res. Dev. 25:206-211.

Pagiola, S., E. Ramirez, J. Gobbi, C. De Haan, M. Ibrahim, E. Murgueitio, and J.P. Ruiz. 2007. Paying for the environmental services of silvopastoral practices in Nicaragua. Ecol. Econ. 64:374-385.

Palmquist, D.L. 2007. Biohydrogenation then and now. Eur. J. Lipid Sci. Technol. 109:737-739.

Palmquist, D.L., A.L. Lock, K.J. Shing eld, and D.E. Bauman. 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. Adv. Food Nutr. Res. 50:179-217.

Panyakaew, P., G. Goel, M. Lourenço, C. Yuangklang, and V. Fievez. 2013. Medium-chain fatty acids from coconut or krabok oil inhibit in vitro rumen methanogenesis and conversion of non-conjugated dienoic biohydrogenation intermediates. Anim. Feed Sci. Technol. 180:18-25.

Pariza, M.W. 2004. Perspective on the safety and effective- ness of conjugated linoleic acid. Am. J. Clinical Nutr. 79:1132-1136.

Patra, A.K. 2013. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: Ameta-analysis. Livest. Sci. 155:244-254.

Posada, S., R. Noguera, y D. Bolívar. 2006. Relación entre presión y volumen para la implementación de la técnica in vitro de producción de gases. Rev. Colomb. Cienc. Pecu. 19:407-414.

Prieto-Manrique, E. 2015. Efecto de la suplementación con aceites vegetales a vacas pastoreando con/sin sistema silvopastoril intensivo con leucaena sobre los ácidos grasos en la leche y la producción de metano in vitro. Tesis PhD., Universidad de Antioquia, COL.

Saliba, L., R. Gervais, Y. Lebeuf, and P.Y. Chouinard. 2014. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of α-linolenic acid. J. Dairy Res. 81:82-90.

SAS (Statistical Analysis System). 2004.Version 9.1.3. SAS Institute Inc., Cary, NC, USA.

Sheehle, E.A., and D. Kruger. 2006. Global anthropogenic methane and nitrous oxide emissions. The Energy J. 27 (special issue):33-44.

Shing eld, K.J., L. Bernard, C. Leroux, and Y. Chilliard. 2010. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Anim. 4:1140-1166.

Shing eld, K.J., Y. Chilliard, V. Toivonen, P. Kairenius, and D.I. Givens. 2008. Trans fatty acids and bioactive lipids in ruminant milk. Adv. Exp. Med. Biol. 606:3-65.

Shing eld, K.J., C.K. Reynolds, G. Hervás, J.M. Griinari, A. S. Grandison, and D.E. Beever. 2006. Examination of the persistency of milk fatty acid composition responses to sh oil and sun ower oil in the diet of dairy cows. J. Dairy Sci. 89:714-732.

Sliwiński, B.J., M. Kreuzer, H.R. Wettstein, and A. Machmüller. 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch. Anim. Nutr. 56:379-392.

Soliva, C.R., I.K. Hindrichsen, L. Meile, M. Kreuzer, and A. Machmüller. 2003. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37:35-39.

Stanton, C., J. Murphy, E. McGrath, R. Devery, J.L. Sébédio, W.W. Christie, and R. Adlof. 2003. Animal feeding strategies for conjugated linoleic acid enrichment of milk. In: J.L. Sébédio et al., editors, Advances in conjugated linoleic acid research. AOCS Press, Champaign, IL, USA. p. 123-145.

Stoffel, C.M., P.M. Crump, and L.E. Armentano. 2015. Effect of dietary fatty acid supplements, varying in fatty acid composition, on milk fat secretion in dairy cattle fed diets supplemented to less than 3% total fatty acids. J. Dairy Sci. 98:431-442.

Tan, H.Y., C.C. Sieo, N. Abdullah, J.B. Liang, X.D. Huang, and Y.W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169:185-193.

Tequin-Ocampo, E. 2014. Estudio de la in uencia de la suplementación lipídica en la dieta de bovinos sobre los ácidos grasos funcionales de la leche, y la producción de metano y ácidos grasos volátiles del uido ruminal por cromatografía de gases. Tesis M.Sc., Universidad de Caldas, COL.

Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed

Sci. Technol. 48:185-197.

Toral, P., A. Belenguer, P. Frutos, and G. Hervás. 2009. Effect of the supplementation of a high-concentrate diet with sun ower and sh oils on ruminal fermentation in sheep. Small Rumin. Res. 81:119-125.

Van Soest, P.J., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary ber, neutral detergent ber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.

Vargas-Bello-Pérez, E., K. Fehrmann-Cartes, G. Íñiguez- González, P. Toro-Mujica, and P.C. Garnsworthy. 2015. Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils. J. Dairy Sci. 98:111-117.

Vasta, V., H.P.S. Makkar, M. Mele, and A. Priolo. 2009. Ruminal biohydrogenation as affected by tannins in vitro. Br. J. Nutr. 102:82-92.

Weiss, M.F., F.A. Martz, and C.L. Lorenzen. 2004a. Conjugated linoleic acid: historical context and implications. Prof. Anim. Sci. 20:118-126.

Weiss, M.F., F.A. Martz, and C.L. Lorenzen. 2004b. Conjugated linoleic acid: implicated mechanisms related to cancer, atherosclerosis, and obesity. Prof. Anim. Sci. 20:127-135.

Wu, D., S. Tang, Z. He, E.N. Odongo, Z. Tan, X. Han, C. Zhou, J. Kang, and M. Wang. 2013. Oleic and linoleic acids alter fermentation characteristics, methane and fatty acid isomers production during in vitro incubation with mixed ruminal microbes. J. Food Agric. Environ. 11:464-469.

Zened, A., A. Troegeler-Meynadier, M.C. Nicot, S. Combes, L. Cauquil, Y. Farizon, and F. Enjalbert. 2011. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. J. Dairy Sci. 94:5634-5645.



How to Cite

Prieto-Manrique, E., Vargas-Sánchez, J. E., Angulo-Arizala, J., & Mahecha Ledesma, L. (2016). Vegetable oils on in vitro fatty acids and methane production in dairy cows. Agronomía Mesoamericana, 28(1), 1–18.

Most read articles by the same author(s)

1 2 > >>