Azotobacter chroococcum and Azospirillum lipoferum as biostimulants in Ipomoea batatas Lam. culture
DOI:
https://doi.org/10.15517/am.v30i2.33896Keywords:
fertility, nitrogen, productivity, bionato, bacteriumAbstract
Introduction. The excessive use of nitrogen fertilizers in sweet potato crops contributes to the ecosystems contamination; to reduce this effect and improve crop productivity, the incorporation of plant growth promoting rhizobacteria (PGPRs) in the strategies of crop managment constitute a sustainbale tool. Objective. The objective of this research was to incorporate the bacterial strains Azotobacter chroococcum IBCR19 and Azospirillum lipoferumIBSC7 in the nitrogen fertilization, and to evaluate their effect on the yield and bromatological composition of sweet potato tuberous roots (Ipomoea batatas Lam). Materials and methods. The study was made in the municipality of Corozal (Sucre, Colombia) during the months of June to October of 2017. An experimental area of 840 m2 was used where twenty-four plots with apical cuttings of the 15020078 accession were established, and distributed under a completely randomized design with an increased factorial arrangement (3x2+2). Root dry matter, yield, and bromatological composition of sweet potato roots were evaluated. Results. Fresh yield and root dry matter showedsignificant differences (p≤0.05) among the treatments, where the application of A. chroococcum IBCR19 and 75% of nitrogen fertilization reached the highest average values of yield and dry matter of 12.18 t.ha-1 y 2.92 t.ha-1, respectively.Similarly, the protein and ethereal extract concentrations differed significantly (p≤0.05) between the inoculatedtreatments in relation to the absolute control. Conclusion. Based on the results obtained, it can be inferred that the inoculation with A. chroococcum IBCR19 reduced the nitrogen fertilization levels by 25% and constitutes a promising strain as a biostimulant.
Downloads
References
Alarcón, A., J.Á. Morales, E. Oliva, Á. Vega, y T. Boicet. 2008. Efecto de la aplicación de Azotobacter chroococcum y Glomus sp. en el cultivo del boniato (Ipomoea batatas (L), Lam). Rev. Electrón. Granma Cienc. 12(2). https://docplayer. es/55850948-Revista-electronica-granma-ciencia-vol-12-no-2-mayo-agosto-2008-issn-x.html (consultado 23 abr. 2018).
Altaf, M.M., and I. Ahmad. 2017. In vitro and in vivo biofilm formation by Azotobacter isolates and its relevance to rhizospere colonization. Rhizosphere 3:138-142. doi:10.1016/j.rhisph.2017.04.009
AOAC (Association of Official Analytical Chemists). 2016. Official methods of analysis of AOAC International. 20th ed. AOAC Int., Gaithersburg, MD, USA.
Arcos, J., y D. Zúñiga. 2016. Rizobacterias promotoras de crecimiento de plantas con capacidad para mejorar la productividad en papa. Rev. Latinoam. Papa 20(1):18-31.
Arias, F.V. López, y P. Guerrero. 2007. Tratamiento de cultivos sin suelo. Hort. Ecol. 5(2):13-15.
Arguello, H. 2015. Evaluation of the effect of a biofertilizer linked to a mineral organic substrate on lettuce grown under greenhouse. Rev. Colomb. Cienc. Hort. 9:72-85. doi:10.17584/rcch.2015v9i1.3747
Armada, E. 2015. Efectos de microorganismos rizosféricos autóctonos (bacterias y hongos miorrízico arbusculares) sobre la tolerancia de las plantas al déficit hídrico en zonas semiáridas: mecanismos implicados. Tesis Dr., Universidad de Granada, Granada, ESP.
Baars, O., X. Zhang, M.I. Gibson, A.T. Stone, F.M.M. Morel, and M.R. Seyedsayamdost. 2018. Crochelins: siderophores with an unprecedented iron-chelating moiety from the nitrogen-fixing bacterium Azotobacter chroococcum. Angew. Chem. Int. Ed. Engl. 57:536-541. doi:10.1002/anie.201709720
Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62:293-300.
Bhattacharyya, P.N., and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350. doi:10.1007/s11274-011-0979-9
Cabello, R., M. Gamarra, y D. García. 2018. Caracterización molecular de Azospirillum sp., Azotobacter sp. y Pseudomonas sp. promotoras del crecimiento vegetal de cultivos de Solanum tuberosum y Zea mays. Sagasteguiana 2:145-156.
Cabrera, E.V.R., B. Bonilla, y M. Aguilar. 2018. Interacciones entre plantas y bacterias promotoras de crecimiento vegetal. Rev. Citecsa 10(15):23-31.
Chaney, A.L., and E.P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8(2):130-132.
Cusumano, C., y N. Zamudio. 2013. Manual técnico para el cultivo de batata (camote o boniato) en la provincia de Tucumán (Argentina). Ediciones INTA, ARG.
da-Silveira, A., V. Sala, E.J. Cardoso, E. Labanca, and M. Cipriano. 2016. Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Appl. Soil Ecol.107:313-319. doi:10.1016/j.apsoil.2016.07.005
Dawwam, G.E., A. Elbeltagy, H.M. Emara., I.H. Abbas, and M.M. Hassan. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 58:195-201. doi:10.1016/j.aoas.2013.07.007
De-Bashan, LE., G. Holguin, B.R. Glick, y Y. Bashan. 2014. Bacterias promotoras de crecimiento en plantas para propósitos agrícolas y ambientales. En: R. Ferrera-Cerrato, y A. Alarcón, editores, Microbiología agrícola: hongos, bacterias, micro y macrofauna, control biológico, planta-microorganismo. Editorial Trillas, Ciudad de México, MEX. p. 170-224.
de-la-Fe-Pérez, Y., A. Díaz-de-la-Osa, G.M. Restrepo-Franco, V.L. Baldani, y A. Hernández-Rodríguez. 2015. Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. Rev. Cub. Cienc. Biol. 4(1):17-26.
Di-Benedetto, N.A., M.R. Corbo, D. Campaniello, M.P. Cataldi, A. Bevilacqua, M. Sinigaglia, and Z. Flagella. 2017. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol. 3:413-434. doi: 10.3934/microbiol.2017.3.413
Doncel, A., L. Chamorro, y A. Pérez. 2016. Actividad in vitro de bacterias endófitas promotoras de crecimiento asociadas con pasto colosoana en el municipio de Corozal, Sucre. Rev. Colomb. Cienc. Anim. 8:351-360.
El-Tarabily, K.A. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161-174. doi:10.1007/s11104-008-9616-2
Esquivel-Cote, R., G. Tsuzuki-Reyes, R.M. Ramírez-Gama, and P. Huante. 2017. Effect of inoculation with Azospirillum sp., and nitrogenous fertilization on the growth and production of tomato (Solanum lycopersicum Mill.). Agroproductividad 10(7):88-93.
Farzana, Y., and O. Radizah. 2005. Influence of rhizobacterial inoculation on growth of the sweetpotato cultivar. Am. J. Biochem. Biotechnol. 1(3):176-179.
Farrar, K., D. Bryant, and N. Cope-Selby. 2014. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol. J. 12:1193-1206. doi:10.1111/pbi.12279
Gaak, O.Y., and I.P. Pshenichnyi. 1955. The effectiveness of specific varieties of Azotobacter. Zemledelie 4:87-91.
García, E. 2018. Efecto de mutantes de Azospirillum brasilense en la producción de polisacáridos sobre el crecimiento de Arabidopsis thaliana. Cienc. Nicolaita 73:29-41.
García-Méndez, A.D., M.Y. Pérez-Damiz, A.A. García-Méndez, y P.M. Madriz-Iztúriz. 2016. Caracterización postcosecha y composición química de la batata (Ipomoea batatas (L.) Lamb.) variedad Topera. Agron. Mesoam. 27:287-300. doi:10.15517/am.v27i2.21426
González, F., and M. Fuentes. 2017. Mechanism of action of five plant growth promoters microorganism. Rev. Cienc. Agr. 34(1):17-31. doi:10.22267/rcia.173401.61
Gonzalvo, S., D. Nieves, J. Ly, M. Macías, M. Carón, y V. Martínez. 2001. Algunos aspectos del valor nutritivo de alimentos venezolanos destinados a animales monogástricos. Livest. Res. Rural Dev.13(2). http://www.lrrd.cipav.org.co/lrrd13/2/ gonz132.htm (consultado 23 abr. 2018).
Gupta, V.V.S.R. 2012. Beneficial microorganisms for sustainable agriculture. Autral. Microbiol. 33:113-115.
ICONTEC (Instituto Colombiano de Normas Técnicas y Certificación). 2002. Norma técnica colombiana NTC 5122: Alimentos para animales. Determinación del contenido de fibra cruda. Método con filtrado intermedio. ICONTEC, COL.
Iqbal, A., H.N. Bhatti, S. Nosheen, A. Jamil, and M.A. Malik. 2002. Histochemical and physicochemical study of bacterial exopolysaccharides. Biotechnology 1(1):28-33. doi:10.3923/biotech.2002.28.33
Jerez, E., y R. Martín. 2012. Comportamiento del crecimiento y el rendimiento de la variedad de papa (Solanum tuberosum L.) Spunta. Cul. Trop. 33(4):53-58.
Martí, H.R., G.B. Corbino, y H. D’Chudil. 2011. La batata: el redescubrimiento de un cultivo. Ciencia hoy 21(121):17-23.
Mezei, M., M. Popović, L. Kovačev, N. Mrkovački, N. Nagl, and D. Malenčić. 1997. Effect of Azotobacter strains on sugar beet callus proliferation and nitrogen metabolism enzymes. Biol. Plant. 40:277-283. doi:10.1023/A:1001028922433
Monib, M., Y. Abd-el-Malek, I. Hosny, and M. Fayez. 1979. Effect of Azotobacter inoculation on plant growth and soil nitrogen. Zentralbl. Bakteriol. Naturwiss. 134(2):140-148. doi:10.1016/S0323-6056(79)80040-3
Naseri, R., A. Moghadam, F. Darabi, A. Hatami, and G.R. Tahmasebei. 2013. The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (SC 704) as a second cropping in western Iran. Bull. Environ. Pharmacol. Life Sci. 2:104-112.
Nasution, R.A., A.M. Tangapo, I. Taufik, and P. Aditiawati. 2017. Comparison of plant growth promoting rhizobacteria (PGPR) diversity and dynamics during growth of Cilembu sweet potato (Ipomoea batatas L var. Rancing) in Cilembu and Jatinangor Site, Indonesia. J. Pure Appl. Microbiol. 11:837-846. doi:10.22207/JPAM.11.2.23
Oliveira, I.J., J.R. Fontes, B.F. Pereira, and A. Muniz. 2018. Inoculation with Azospirillum brasiliense increases maize yield. Chem. Biol. Technol. Agric. 5:6. doi:10.1186/s40538-018-0118-z
Ortiz, L.Y., y V.J. Flórez. 2008. Comparación cuantitativa de ácido abscísico y citoquininas en la tuberización de Solanum tuberosum L. y Solanum phureja Juz. et Buk. Agron. Colomb. 26(1):32-38.
Othman, R., Z. Shamsuddin, M.R. Matior, and L. Maira. 1998. Growth enhancement of sweet potato through application of Azospirillum and IAA-producing rhizobacteria. UPM Res. Rep. 2:31-31.
Pedraza, R.O., K.R.S. Teixeira, A. Fernández, I. García, B.E. Baca, R. Azcón, V.L.D. Baldani, y R. Bonilla. 2010. Microorganismos que mejoran el crecimiento de las plantas y la calidad de los suelos. Revisión. Corpoica Cienc. Tecnol. Agropecu. 11:155-164. doi:10.21930/rcta.vol11_num2_art:206
Pérez-Pazos, J.V., y D.B. Sánchez-López. 2017. Caracterización y efecto de Azotobacter, Azospirillum y Pseudomonas asociadas a Ipomoea batatas del Caribe Colombiano. Rev. Colomb. Biotecnol. 19(2):35-46. doi:10.15446/rev.colomb.biote.v19n2.69471
Phogat, V., M.A. Skewes, J.W. Cox, G. Sanderson, J. Alam, and J. Šimůnek. 2014. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching. J. Hydrol. 513:504-516. doi:10.1016/j.jhydrol.2014.04.008
Prashar, P., N. Kapoor, and S. Sachdeva. 2014. Rhizosphere: Its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. 13:63-77. doi:10.1007/s11157-013-9317-z
Robson, R.L., R. Jones, R. Robson, A. Schwartz, and T.H. Richardson. 2015. Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412). PloS One 10(6):e0127997. doi:10.1371/journal.pone.0127997
Russell, M.H., A.N. Bible, X. Fang, J.R. Gooding, S.R. Campagna, M. Gomelsky, and G. Alexandre. 2013. Integration of the second messenger c-di-GMP into the chemotactic signaling pathway. mBio 4(2):e00001-13. doi:0.1128/mBio.00001-13
Saad, M.S., A.A. Sabuddin, A.G Yunus, and Z.H. Shamsuddin. 1999. Effects of Azospirillum inoculation on sweetpotato grown on sandy tin-tailing soil. Commun. Soil Sci. Plant Anal. 30:1583-1592. doi:10.1080/00103629909370310
Saikia, S.P., D. Bora, A. Goswami, K.D. Mudoi, and A. Gogoi. 2012. A review on the role of Azospirillum in the yield improvement of non leguminous crops. Afr. J. Microbiol. Res. 6:1085-1102. doi:10.5897/AJMR11.019
Sánchez, D., y R. Bonilla. 2014. Respuesta vegetal de acacia decurrens a la inoculación con rizobacterias promotoras de crecimiento vegetal bajo estrés salino. Temas Agrarios 19:159-172.
Sánchez, D.B., y J.V. Pérez. 2018. Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de Dioscorea rotundata in vitro. Agronomía Costarricense 42(2):75-91. doi:10.15517/rac.v42i2.33780
Shikina, A.P. 1961. Effect of organo-mineral and bacterial fertilizers on yield utilization and quality of potato tubers. Izv. Akad. Nauk. Kazakh. SSR. Sev. Bot. Pochvobed. 4:3-14.
Si, C., C. Shi, H. Liu, X. Zhan, Y. Liu, D. Wang, D. Meng, and L. Tang. 2018. Influence of two nitrogen forms on hormone metabolism in potential storage roots and storage root number of sweetpotato. Crop Sci. 58:1-11. doi:10.2135/ cropsci2018.01.0067
Six, J., K. Paustian, E.T. Elliott, and C. Combrink, 2000. Soil structure and organic matter. I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64:681-689.
Souza, Rd., A. Ambrosini, and L.M. Passaglia. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38:401-419. doi:10.1590/S1415-475738420150053
Subair, H. 2015. Isolation and Screening Bacterial Exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer Indole Acetic Acid (IAA). Proc. Food Sci. 3:74-81. doi:10.1016/j.profoo.2015.01.007
Wani, P.A., M.S. Khan, and A. Zaidi. 2007. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36-45. doi:10.1016/j. chemosphere.2007.07.028
Wilson, P.W., and S.C. Knigth. 1952. Experiments in bacterial physiology. Burguess, Minneapolis, MN, USA.
Yildirim, Z., Ö. Tokuşoğlu, and G. Öztürk. 2011. Determination of sweet potato [Ipomoea batatas (L.) Lam.] genotypes suitable to the Aegean region of Turkey. Turk. J. Field Crops 16:48-53.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).