Dinámica temporal de erosión del suelo en café (Coffea arabica), Llano Brenes, Costa Rica

Autores/as

DOI:

https://doi.org/10.15517/am.v33i3.49736

Palabras clave:

escorrentía, Coffea, suelos tropicales, infiltración

Resumen

Introducción. La erosión hídrica es un fenómeno natural, acelerado por la actividad humana, que facilita la degradación de los suelos y el transporte de sedimentos a otras zonas. Objetivo. Cuantificar la escorrentía superficial y la tasa de erosión a escala de parcela, bajo eventos de precipitación natural, en un suelo Entisol sembrado con café (Coffea arabica) con sombra, y determinar la dinámica temporal y la influencia de los principales factores asociados con este proceso. Materiales y métodos. El estudio se desarrolló en Llano Brenes, Alajuela, Costa Rica. Se instalaron nueve parcelas de escorrentía, los datos fueron recolectados entre mayo de 2018 y noviembre de 2019, cada parcela tuvo un medidor de escorrentía y un contenedor para la toma de muestras de sedimentos. Se instalaron tres sensores de reflectometría de dominio temporal para las mediciones de contenido superficial de humedad del suelo. El análisis de datos se realizó a escala mensual-anual, inter-evento e intra-evento. En la escala intra-evento se utilizó el modelo de infiltración de Diskin y Nazimov. Resultados. En los años 2018 y 2019 se obtuvieron, respectivamente, los siguientes resultados anuales: a) lámina total de escorrentía de 90,99 y 102,66 mm, b) concentración de sedimentos de 2,14 y 1,88 g L-1, y c) pérdida de suelo de 1612 y 1692 g m-2. Los mayores valores de pérdida de suelo se obtuvieron en octubre de cada año; el análisis intra-evento explicó la generación de escorrentía con base la lámina de precipitación y el contenido de humedad inicial en el evento. Conclusión. La tasa de erosión y la escorrentía medias anuales fueron de 1652 g m-2 y 96,8 mm, respectivamente. La lámina de precipitación, intensidades y contenido inicial de humedad superficial del suelo tuvieron un importante rol en la generación de escorrentía y pérdida de suelo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alcázar Torralba, M. A. (2013). Evaluación de la erosión hídrica en parcelas experimentales en campos agrícolas de secano mediterráneo [Tesis de Doctorado, Universidad Complutense de Madrid]. Repositorio Institucional de la Universidad Complutense de Madrid. https://eprints.ucm.es/id/eprint/23546/

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235), Article 1261071. https://doi.org/10.1126/science.1261071

Anache, J. A. A., Wendland, E. C., Oliveira, P. T. S., Flanagan, D. C., & Nearing, M. A. (2017). Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. CATENA, 152, 29–39. https://doi.org/10.1016/j.catena.2017.01.003

Assouline, S., & Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. CATENA, 66(3), 211–220. https://doi.org/10.1016/j.catena.2006.02.005

Ataroff, M., & Monasterio, M. (1997). Soil erosion under different management of coffee plantations in the Venezuelan Andes. Soil Technology, 11(1), 95–108. https://doi.org/10.1016/S0933-3630(96)00118-3

Bagarello, V., & Ferro, V. (1998). Calibrating storage tanks for soil erosion measurement from plots. Earth Surface Processes and Landforms, 23(13), 1151–1170. https://doi.org/10.1002/(SICI)1096-9837(199812)23:13<1151::AID-ESP929>3.0.CO;2-7

Bermúdez Méndez, M. M. (1980). Erosión hídrica y escorrentía superficial en el sistema de café (Coffea arabica L.), poró (Erythrina poeppigiana (Walpers) O. Flook) y laurel (Cordia alliodora R. & P.) Cham) en Turrialba, Costa Rica [Tesis de Maestría, Centro Agronómico Tropical de Investigación y Enseñanza]. Repositorio del Centro Agronómico Tropical de Investigación y Enseñanza. https://repositorio.catie.ac.cr/handle/11554/4958

Blanco-Canqui, H., & Lal, R. (2010). Soil and water conservation. In H. Blanco-Canqui, & R. Lal (Eds.), Principles of Soil Conservation and Management (pp. 1–19). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8709-7_1

Caiqiong, Y., & Jun, F. (2016). Application of HYDRUS-1D model to provide antecedent soil water contents for analysis of runoff and soil erosion from a slope on the Loess Plateau. CATENA, 139, 1–8. https://doi.org/10.1016/j.catena.2015.11.017

Campbell Sci. (2020). CS616 and CS625 Water content reflectometers. Campbell Scientific, Inc.

Cannavo, P., Sansoulet, J., Harmand, J.-M., Siles, P., Dreyer, E., & Vaast, P. (2011). Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture, Ecosystems & Environment, 140(1–2), 1–13. https://doi.org/10.1016/j.agee.2010.11.005

Chen, H., Zhang, X., Abla, M., Lü, D., Yan, R., Ren, Q., Ren, Z., Yang, Y., Zhao, W., Lin, P., Liu, B., & Yang, X. (2018). Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. CATENA, 170, 141–149. https://doi.org/10.1016/j.catena.2018.06.006

Damnati, B., Ibrahimi, S., & Radakovitch, O. (2013). Quantifying erosion using 137Cs and 210Pb in cultivated soils in three Mediterranean watershed: Synthesis study from El Hachef, Raouz and Nakhla (North West Morocco). Journal of African Earth Sciences, 79, 50–57. https://doi.org/10.1016/j.jafrearsci.2012.10.006

Diskin, M. H., & Nazimov, N. (1995). Linear reservoir with feedback regulated inlet as a model for the infiltration process. Journal of Hydrology, 172(1–4), 313–330. https://doi.org/10.1016/0022-1694(95)02709-X

Dong, Y., Xiong, D., Su, Z. A., Yang, D., Zheng, X., Shi, L., & Poesen, J. (2018). Effects of vegetation buffer strips on concentrated flow hydraulics and gully bed erosion based on in situ scouring experiments. Land Degradation & Development, 29(6), 1672–1682. https://doi.org/10.1002/ldr.2943

Eswaran, H., Lal, R., & Reich, P. (2001). Land degradation: An overview. In E. M. Bridges, I. D. Hannam, L. R. Oldeman, F. W. T. Pening de Vries, S. J. Scherr, & S. Sombatpanit (Eds.), Response to land degradation (pp. 20–35). CRC Press. https://doi.org/10.1201/9780429187957-4

Fang, N. F., Wang, L., & Shi, Z. H. (2017). Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552, 387–395. https://doi.org/10.1016/j.jhydrol.2017.06.048

Food and Agriculture Organization of the United Nations. (1979). A provisional methodology for soil degradation assessment. Food and Agriculture Organization of the United Nations.

Fortugno, D., Boix-Fayos, C., Bombino, G., Denisi, P., Rubio, J. M. Q., Tamburino, V., & Zema, D. A. (2017). Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surface Processes and Landforms, 42(14), 2469–2483. https://doi.org/10.1002/esp.4197

Gao, X., Wu, P., Zhao, X., Shi, Y., Wang, J., & Zhang, B. (2011). Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. CATENA, 87(3), 357–367. https://doi.org/10.1016/j.catena.2011.07.004

García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173. https://doi.org/10.1016/j.geomorph.2015.03.008

Ghahramani, A., & Ishikawa, Y. (2013). Water flux and sediment transport within a forested landscape: The role of connectivity, subsurface flow, and slope length scale on transport mechanism. Hydrological Processes, 27(26), 4091–4102. https://doi.org/10.1002/hyp.9791

Gómez, J. A., Llewellyn, C., Basch, G., Sutton, P. B., Dyson, J. S., & Jones, C. A. (2011). The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use and Management, 27(4), 502–514. https://doi.org/10.1111/j.1475-2743.2011.00367.x

Gómez-Delgado, F., Roupsard, O., le Maire, G., Taugourdeau, S., Pérez, A., van Oijen, M., Vaast, P., Rapidel, B., Harmand, J. M., Voltz, M., Bonnefond, J. M., Imbach, P., & Moussa, R. (2011). Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica. Hydrology and Earth System Sciences, 15(1), 369–392. https://doi.org/10.5194/hess-15-369-2011

Iijima, M., Izumi, Y., Yuliadi, E., Sunyoto, Afandi, & Utomo, M. (2003). Erosion control on a steep sloped coffee field in indonesia with alley cropping, intercropped vegetables, and no-tillage. Plant Production Science, 6(3), 224–229. https://doi.org/10.1626/pps.6.224

Instituto del Café de Costa Rica. (2020). Informe sobre la actividad cafetalera de Costa Rica. https://n9.cl/ugsp

Khan, M. A., Kakar, E., Baloch, D. M., & Azad, S. U. D. (2011). Calibration of time domain reflectometry (TDR) soil moisture point probe for two soils. Journal of Applied and Emerging Sciences, 2(1), 19–26.

Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472

Luk, S. (1985). Effect of antecedent soil moisture content on rainwash erosion. CATENA, 12(1), 129–139. https://doi.org/10.1016/S0341-8162(85)80012-6

Maetens, W., Poesen, J., & Vanmaercke, M. (2012). How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Science Reviews, 115(1–2), 21–36. https://doi.org/10.1016/j.earscirev.2012.08.003

Mohamadi, M. A., & Kavian, A. (2015). Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil and Water Conservation Research, 3(4), 273–281. https://doi.org/10.1016/j.iswcr.2015.10.001

Molina Campos, E. (2015). Determinación y cuantificación de la tasa de erosión laminar en cafetales ubicados en la cuenca del Río Jesús María [Tesis de Grado, Universidad de Costa Rica]. Repositorio SIBDI de la Universidad de Costa Rica. http://repositorio.sibdi.ucr.ac.cr:8080/xmlui/handle/123456789/16449

Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268–13272. https://doi.org/10.1073/pnas.0611508104

Naranjo, M. E., & Ataroff, M. (2015). Calibración de equipos TDR para su uso en suelos no disturbados. Interciencia, 40(6), 416–422. https://www.interciencia.net/wp-content/uploads/2017/10/416-c-NARANJO.pdf

Pimentel, D., Terhune, E. C., Dyson-Hudson, R., Rochereau, S., Samis, R., Smith, E. A., Denman, D., Reifschneider, D., & Shepard, M. (1976). Land Degradation: effects on food and energy resources. Science, 194(4261), 149–155. http://www.jstor.org/stable/1742661

Presbitero, A. L., Escalante, M. C., Rose, C. W., Coughlan, K. J., & Ciesiolka, C. A. (1995). Erodibility evaluation and the effect of land management practices on soil erosion from steep slopes in Leyte, the Philippines. Soil Technology, 8(3), 205–213. https://doi.org/10.1016/0933-3630(95)00020-8

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Soil Survey Staff. (2014). Keys to Soil Taxonomy. United States Department of Agriculture. https://bit.ly/2AhEErb

Uribe-Gómez, S., Francisco-Nicolás, N., & Turrent-Fernández, A. (2002). Pérdida de suelo y nutrimentos en un entisol con prácticas de conservación en los Tuxtlas, Veracruz, México. Agrociencia, 36(2), 161–168. https://www.agrociencia-colpos.mx/index.php/agrociencia/article/view/170

Vahrson, W., & Cervantes, C. (1991). Tasas de escorrentía superficial y erosión laminar en Puriscal, Costa Rica. Turrialba, 41(3), 396–402. https://repositorio.catie.ac.cr/handle/11554/10256

van Dijk, A. I. J. M., Bruijnzeel, L. A., & Rosewell, C. J. (2002). Rainfall intensity–kinetic energy relationships: A critical literature appraisal. Journal of Hydrology, 261(1–4), 1–23. https://doi.org/10.1016/S0022-1694(02)00020-3

Verbist, B., Poesen, J., van Noordwijk, M., Widianto, Suprayogo, D., Agus, F., & Deckers, J. (2010). Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape. CATENA, 80(1), 34–46. https://doi.org/10.1016/j.catena.2009.08.007

Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J., & Smith, C. J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews, 94(1–4), 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003

Villatoro-Sánchez, M., Le Bissonnais, Y., Moussa, R., & Rapidel, B. (2015). Temporal dynamics of runoff and soil loss on a plot scale under a coffee plantation on steep soil (Ultisol), Costa Rica. Journal of Hydrology, 523, 409–426. https://doi.org/10.1016/j.jhydrol.2015.01.058

Wischmeier, W. H. (1959). A rainfall erosion index for a universal soil-loss equation. Soil Science Society of America Journal, 23(3), 246–249. https://doi.org/10.2136/sssaj1959.03615995002300030027x

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Department of Agriculture, Science and Education Administration.

Wuepper, D., Borrelli, P., & Finger, R. (2020). Countries and the global rate of soil erosion. Nature Sustainability, 3, 51–55. https://doi.org/10.1038/s41893-019-0438-4

Xiong, M., Sun, R., & Chen, L. (2019). A global comparison of soil erosion associated with land use and climate type. Geoderma, 343, 31–39. https://doi.org/10.1016/j.geoderma.2019.02.013

Yao, J., Cheng, J., Zhou, Z., Sun, L., & Zhang, H. (2018). Effects of herbaceous vegetation coverage and rainfall intensity on splash characteristics in northern China. CATENA, 167, 411–421. https://doi.org/10.1016/j.catena.2018.05.019

Publicado

2022-08-03

Cómo citar

Palominos-Rizzo, T., Villatoro-Sánchez, M., Alvarado-Hernández, A., Cortés-Granados, V., & Paguada-Pérez, D. (2022). Dinámica temporal de erosión del suelo en café (Coffea arabica), Llano Brenes, Costa Rica. Agronomía Mesoamericana, 33(3), 49736. https://doi.org/10.15517/am.v33i3.49736

Artículos más leídos del mismo autor/a