Calidad de huevo y comportamiento productivo de gallinas ponedoras ISA Brown con acceso a pastoreo
DOI:
https://doi.org/10.15517/am.v34i2.51511Palabras clave:
avicultura, rendimiento de postura, rendimiento de huevo, calidad, pastoreoResumen
Introducción. Los sistemas de producción de huevo son fundamentales para la seguridad alimentaria. Las preocupaciones alrededor del bienestar animal incrementan el interés por los sistemas de producción de huevo con acceso a pastoreo. Objetivo. Describir los rendimientos productivos, características morfológicas y calidad nutricional de los huevos de gallinas ponedoras de la línea genética ISA Brown en un sistema de piso con acceso a pastoreo. Materiales y métodos. La investigación se llevó a cabo entre julio del 2018 y enero del 2020 en el cantón central de Turrialba, Cartago, Costa Rica, con gallinas de la línea genética ISA Brown con acceso a pastoreo. Se compararon los rendimientos productivos con el estándar de la línea genética. Se evaluaron variables morfológicas externas e internas del huevo y se caracterizó el contenido nutricional del mismo (materia seca, proteína cruda, extracto etéreo, cenizas, calcio, fósforo, ácidos grasos saturados (AGS), monoinsaturados (AGMI) y poliinsaturados (AGPI)), en gallinas de diferentes edades. Resultados. Los rendimientos productivos no distaron del estándar de la genética. El aumento en la edad del ave tuvo una influencia estadísticamente significativa sobre el incremento en el peso del huevo y de la cáscara, y la disminución del índice morfológico. El análisis nutricional indicó que el aumento en la edad de la gallina disminuyó el contenido de materia seca y la concentración de AGS y AGMI en el huevo. La relación AGPI/AGS de los huevos fue superior a 0,45, indistintamente de la edad de la gallina ponedora. Conclusión. Los indicadores productivos de las galinas con acceso a pastoreo no presentaron diferencias con los estándares de la línea genética ISA Brown para sistemas alternativos. El peso, el índice de yema, las unidades Haugh y el índice morfológico del huevo variaron con la edad de la gallina.
Descargas
Citas
Al-Batshan, H. A., Scheideler, S. E., Black., B. L., Garlich, J. D., & Anderson, K. E. (1994). Duodenal calcium uptake, femur ashm and eggshell quality decline with the age and increase following molt. Poultry Science, 73(10), 1590–1596. https://doi.org/10.3382/ps.0731590
Artan, S., & Durmuş, I. (2015). Köy, serbest ve kafes sistemlerinde üretilen yumurtaların kalite özellikleri bakımından karşılaştırılması. Akademik Ziraat Dergisi, 4(2), 89–97. https://dergipark.org.tr/tr/pub/azd/issue/32194/358147
Association of Official Analytical Chemist. (1997). Official methods of analysis of AOAC International (16th ed., 3rd rev.). AOAC International.
Batkowska, J., & Brodacki, A. (2017). Selected quality traits of eggs and the productivity of newlycreated laying hens dedicated to extensive system of rearing. Archives Animal Breeding, 60(2), 87–93. https://doi.org/10.5194/aab-60-87-2017
Benavides-Reyes, C., Folegatti, E., Dominguez-Gasca, N., Litta, G., Sanchez-Rodriguez, E., Rodriguez-Navarro, A. B., & Umar Furuk, M. (2021). Research Note: Changes in eggshell quality and microstructure related to hen age during a production cycle. Poultry Science, 100(9), Article 101287. https://doi.org/10.1016/j.psj.2021.101287
Bray, H. J., & Ankeny, R. A. (2017). Happy chickens lay tastier eggs: Motivations for buying free-range eggs in Australia. Anthrozoos, 30(2), 213–226. https://doi.org/10.1080/08927936.2017.1310986
Cao, Y., & Li, D. (2013). Impact of increased demand for animal protein products in Asian countries: Implications on global food security. Animal Frontiers, 3(3), 48–55. https://doi.org/10.2527/af.2013-0024
Campbell, D. L. M., Bari, M. S., & Rault, J. -L. (2021). Free-range egg production: its implications for hen welfare. Animal Production Science, 61(9–10), 848–855. https://doi.org/10.1071/AN19576
Campbell, D. L. M., Lee, C., Hinch, G. N., & Roberts, J. R. (2017). Egg production and egg quality in free-range laying hens housed at different outdoor stocking densities. Poultry Science, 96(9), 3128–3137. https:/doi.org/10.3382/ps/pex107
Chavarría-Zamora, S., Chacón-Villalobos, A., & WingChing-Jones, R. (2021). Efecto del alojamiento de las gallinas (pastoreo, piso, jaula) sobre ácidos grasos, consumo y percepción sensorial de sus huevos. Cuadernos de Investigación UNED, 13(1), Artículo e3317. https://doi.org/10.22458/urj.v13i1.3317
Curtis, P. A., Kerth, L. K., & Anderson, K. E. (2005, May 23-26). Quality and compositional characteristics of layer hens as affected by bird age [Presentation]. XI European Symposium on the Quality of Eggs and Egg Products, Doorwerth, The Netherlands.
Ferrante, V., Lolli, S., Vezzoli, G., & Guidobono Cavalchini, L. (2009). Effects of two different rearing systems (organic and barn) on production performance, animal welfare traits and egg quality characteristics in laying hens. Italian Journal of Animal Science, 8(2), 165–174. https://doi.org/10.4081/ijas.2009.165
Freitas, L. C. S. R., Tinôco, I. F. F., Baêta, F. C., Barbari, M., Conti, L., Teles Júnior, C. G. S, Cândido, M. G. L., Morais, C. V., & Sousa, F. C. (2017). Correlation between egg quality parameters, housing thermal conditions and age of laying hens. Agronomy Research, 15(3), 687–693. https://bit.ly/3NuHdZL
Galic, A., Filipovic, D., Janjecic, Z., Bedekovic, D., Kovacev, I., Copec, K., & Pilestic, S. (2019). Physical and mechanical characteristics of Hisex Brown hen eggs from three different housing systems. South African Journal of Animal Science, 49(3), 468–476. http://doi.org/10.4314/sajas.v49i3.7
Guo, J., Kliem, K. E., Lovegrove, J. A., & Givens, D. I. (2017). Effect of production system, supermarket and purchase date on the vitamin D content of eggs at retail. Food Chemistry, 221, 1021–1025. https://doi.org/10.1016/j.foodchem.2016.11.060
Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods, 6(7), Article 53. https://doi.org/10.3390/foods6070053
Holt, P. S., Davies, R. H., Dewulf, J., Gast, R. K., Huwe, J. K., Jones, D. R., Waltman, D., & Willian, K. R. (2011). The impact of different housing systems on egg safety and quality. Poultry Science, 90(1), 251–262. https://doi.org/10.3382/ps.2010-00794
Human Farm Animal Care. (2018). Normas HFAC para gallinas ponedoras de huevo. https://bit.ly/3Wz7kmm
Ianni, A., Bartolini, D., Bennato, F., & Martino, G. (2021). Egg quality from Nera Atriana, a local poultry breed of the Abruzzo Region (Italy), and ISA Brown hens reared under Free Range conditions. Animals, 11(2), Article 257. https://doi.org/10.3390/ani11020257
Instituto Meteorológico Nacional. (2021). Boletín meteorológico mensual: enero 2019 - diciembre 2019. Retrieved from https://www.imn.ac.cr/boletin-meteorologico
ISA poultry. (s.f.). ISA-Brown en sistemas alternativos. Recuperado diciembre, 2021 de https://bit.ly/2xw1qwg
Karsten, H. D., Patterson, P. H., Stout, R., & Crews, G. (2010). Vitamins A, E and fatty acid composition of the eggs of caged hens and pastured hens. Renewable Agriculture and Food Systems, 25(1), 45–54. https://doi.org/10.1017/S1742170509990214
Kocevski, D., Nikolova, N., & Kuzelov, A. (2011). The influence of strain and age on some egg quality parameters of commercial laying hens. Biotechnology in Animal Husbandry, 27(4), 1649–1658. https://doi.org/10.2298/BAH1104649K
Krawczyk, J., & Gornowicz, E. (2010). Quality of eggs from hens kept in two different free-range systems in comparison with a barn system. Archiv für Geflügelk, 74(3), 151–157. https://bit.ly/3XAkPni
Küçükyilmaz, K., Bozkurt, M., Nur Herken, E., Çınar, M., Uğur Çatlı, A., Bintaş, E., & Çöven, F. (2012). Effects of rearing systems on performance, egg characteristics and immune response in two layer hen genotype. Asian-Australasian Journal of Animal Sciences, 25(4), 559–568. https://doi.org/10.5713/ajas.2011.11382
Leenstra, F., Ten Napel, J., Visscher, J., & Van Sambeek, F. (2016). Layer breeding programmes in changing production environments: a historic perspective. World´s Poultry Science Journal, 72(1), 21–26. https://doi.org/10.1017/s0043933915002743
Lukanov, H., Genchev, A., & Pavlov, A. (2015). Egg quality and shell colour characteristics of crosses between Araucana and Schijndelaar with highly productive White Leghorn and Rhode Island Red strains. Agricultural Science and Technology, 7(3), 366–371. https://bit.ly/3j5VBy1
MacKenney Kirste, L. P., & Monzón Díaz, O. R. (2014). Evaluación de las líneas de gallinas ponedoras Hy-Line CV-22® Y Dekalb White® en un sistema de semipastoreo en Zamorano, Honduras [Tesis licenciatura, Escuela Agrícola Panamericana]. Repositorio de la Escuela Agrícola Panamericana. https://bdigital.zamorano.edu/bitstream/11036/3486/1/CPA-2014-051.pdf
Meijerhof, R. (1994). Theoretical and empirical studies on temperature and moisture loss of hatching eggs during the pre-incubation period [Doctoral thesis, Wageningen University]. Wageningen University & Research Library. https://library.wur.nl/WebQuery/wurpubs/27322
Meseret, S. (2016). A review of poultry welfare in conventional production system. Livestock Research of Rural Development, 28, Article 234. http://www.lrrd.org/lrrd28/12/mese28234.html
Miao, Z. H., Glatz, P. C., & Ru, J. Y. (2005). Free-range Poultry Production – A Review. Asian Australian Journal of Animal Science, 18(1), 113–132. https://doi.org/10.5713/ajas.2005.113
Misir, R., Laarveld, B., & Blair, R. (1985). Evaluation of a rapid method for preparation of fatty acid methyl esters for analysis by gas-liquid chromatography. Journal of Chromatography A, 331, 141–148. https://doi.org/10.1016/0021-9673(85)80015-7
Mørch Andersen, L. M. (2011). Animal welfare and eggs-Cheap talk or money on the counter? Journal of Agricultural Economics, 63(3), 565–584. https://doi.org/10.1111/j.1477-9552.2011.00310.x
Nasri, H., van den Brand, H., Najjar, T., & Bouzouaia, M. (2019). Egg storage and breeder age impact in egg quality and embryo development. Journal of Animal Physiology and Animal Nutrition, 104(1), 257–268. https://doi.org/10.1111/jpn.13240
Norwood, F. B., & Lusk, J. L. (2011). A calibrated auction-conjoint valuation method: Valuing pork and eggs produced under differing animal welfare conditions. Journal of Environmental Economics and Management, 62(1), 80–94. https://doi.org/10.1016/j.jeem.2011.04.001
Nowaczewski, S., Kontecka, H., Rosinski, A., Koberling, S., & Koronowski, P. (2010). Egg quality of Japanese quail depends on layer age and storage time. Folia Biologica (Kraków), 58(3–4), 201–207. http://www.isez.pan.krakow.pl/journals/folia/pdf/58(3-4)/58(3-4)_11.pdf
Nys, Y. (2017). Laying hen nutrition: optimizing hen performance and health, bone and eggshell quality. In Y. Nys (Ed.), Achieving sustainable production of eggs (1st ed., pp. 29–56). Institut National de la Recherche Agronomique.
Ochs, D., Wolf, C. A., Widmar, N. O., Bir, C., & Lai, J. (2019). Hen housing system information effects on U.S. egg demand. Food Policy, 87, Article 101743. https://doi.org/10.1016/j.foodpol.2019.101743
Okedere, D. A., Ademola, P., & Asiwaju, P. M. (2020). Performance and cost-benefit analysis of Isa Brown layers on different management systems. Bulletin of the National Research Centre, 44, Article 74. https://doi.org/10.1186/s42269-020-00332-w
Pavlovski, Z., Škrbić, Z., & Lukić, M. (2011). Free systems of rearing of chickens and layer hens: quality of meat and eggs. Tehnologija Mesa, 52(1), 160–166. https://bit.ly/3wCycbo
Pérez-Bonilla, A., Novoa, S., García, J., Mohiti-Asli, M., Frikha, M., & Mateos, G. G. (2012). Effects of energy concentration of the diet on productive performance and egg quality of brown egg-laying hens differing in initial body weight. Poultry Science, 91(12), 3156–3166. http://doi.org/ 10.3382/ps.2012-02526
Pintea, A., Dulf, F., Bunea, A., Matea, C., & Andrei, S. (2012). Comparative analysis of lipophillic compounds in eggs organically raised ISA Brown and Araucana hens. Chemical papers, 66(10), 955–963. https://doi.org/10.2478/s11696-012-0219-2
Rayan, G. N., Galal, A., Fathi, M. M., & El-Attar, A. H. (2010). Impact of layer breeder flock age and strain on mechanical and ultrastructural properties of eggshell in chicken. International Journal of Poultry Science, 9(2), 139–147. https://doi.org/10.3923/ijps.2010.139.147
Réhault-Godbert, S., Guyot, N., & Nys, Y. (2019). The golden egg: nutritional value, bioactivities and emerging benefits for human health. Nutrients, 11(3), Article 684. https://doi.org/10.3390/nu11030684
Rodríguez Mengod, A. (2016). Tipificación de la calidad del huevo de gallina ecológico y convencional [Tesis doctoral, Universidad Politécnica de Valencia]. Repositorio Institucional de la Universidad Politécnica de Valencia. https://doi.org/10.4995/Thesis/10251/71437
Ruhnke, I., Cowling, G., Sommerlad, M., Swick, R., & Choct, M. (2014, September 11-13). Gut impaction in free range hens [Presentation]. Congress of the European Society of Veterinary and Comparative Nutrition, Utrecht, The Netherlands.
Samiullah, S., & Roberts, J. R. (2014). The eggshell cuticle of the laying hen. Worlds Poultry Science Journal, 70(4), 693–708. https://doi.org/10.1017/S0043933914000786
Samiullah, S., Roberts, J. R., & Chousalkar, K. (2014). Effect of production system and flock age on egg quality and total bacterial load in commercial laying hens. The Journal of Applied Poultry Research, 23(1), 59–70. https://doi.org/10.3382/japr.2013-00805
Samiullah, S., Roberts, J. R., & Chousalkar, K. (2016). Oviposition time, flock age, and egg position in clutch in relation to brown eggshell color in laying hens. Poultry Science, 95(9), 2052–2057. https://doi.org/10.3382/ps/pew197
SAS Institute (2012). SAS/STAT® 9.1. user´s guide. SAS Institute Inc.
Scholtyssek, S. (Ed.) (1970). Manual de avicultura moderna. Editorial Acribia. https://www.editorialacribia.com/libro/manual-de-avicultura-moderna_53966/
Sharma, M. K., McDaniel, C. D., Kiess, A. S., Loar, R. E., & Adhikari, P. (2022). Effect of housing environment and hen strain on egg production and egg quality as well as cloacal and eggshell microbiology in laying hens. Poultry Science, 101(2), Article 101595. https://doi.org/10.1016/j.psj.2021.101595
Shields, S., Shapiro, P., & Rowan, A. (2017). A decade of progress toward ending the intensive confinement of farm animals in the United States. Animals, 7(12), Article 40. https://doi.org/10.3390/ani7050040
Silversides, F. G. (1994). The haugh unit correction for egg weight is not adequate for comparing eggs from chickens of different lines and ages. Poultry Science, 3(2), 120–126. https://doi.org/10.1093/japr/3.2.120
Simopoulos, A. P. (2000). Symposium: role of poultry products in enriching the human diet with n-3 PUFA. Poultry Science, 79(7), 961–970. https://doi.org/10.1093/ps/79.7.961
Singh, M., Ruhnke, I., de Koning, C., Drake, K., Skerman, A. G., Hinch, G. N., & Glatz, P. C. (2017). Demographics and practices of semi-intensive free-range farming systems in Australia with an outdoor stocking density of <1500 hens/hectare. PLOS ONE, 12(10), Article e0187057. https://doi.org/10.1371/journal.pone.0187057
Škrbić, Z., Lukić, M., Petričević, V., Bogosavljević-Bošković, S., Rakonjac, S., Dosković, V., & Tolimir, N. (2020). Quality of eggs from pasture rearing layers of different genotypes. Biotechnology in Animal Husbandry, 27(3), 659–667. https://doi.org/10.2298/BAH2002181S
Škrbić, Z., Pavlovski, Z., Lukić, M., Vitorović, D., Petričević, V., & Stojanović, L. J. (2011). Changes of egg quality properties with the age of layer hens in traditional and conventional production. Biotechnology in Animal Husbandry, 27(3), 659–667. https://doi.org/10.2298/BAH1103659S
Sokołowicz, Z., Dykiel, M., Krawczyk, J., & Augustyńska-Prejsnar, A. (2019). Effect of layer genotype on physical characteristics and nutritive value of organic eggs. CyTA- Journal of Food, 17(1), 11–19. https://doi.org/10.1080/19476337.2018.1541480
Su, Y., Ge, Y., Xu, Z., Zhang, D., & Li, D. (2021). The digestive and reproductive tract microbiotas and their association with body weight in laying hens. Poultry Science, 100(11), Article 101422. https://doi.org/10.1016/j.psj.2021.101422
Tona, K., Onagbesan, O., De Ketelaere, B., Decuypere, E., & Bruggeman, V. (2004). Effects of age of broiler breeders and egg storage on egg quality, hatchability, chick quality, chick weight, and chick post hatch growth to forty-two days. The Journal of Applied Poultry Research, 13(1), 10–18. https://doi.org/10.1093/japr/13.1.10
Travel, A., Nys, Y., & Lopes, E. (2010). Facteurs physiologiques et environnementaux influençant la production et la qualité de l´oeuf. INRAE Productions Animales, 23(2), 155–166. https://doi.org/10.20870/productions-animales.2010.23.2.3297
Ulmer-Franco, A. M., Fasenko, G. M., & O’Dea Christopher, E. E. (2010). Hatching egg characteristics, chick quality, and broiler performance at 2 breeder flock ages and from 3 egg weights. Poultry Science, 89(12), 2735–2742. https://doi.org/10.3382/ps.2009-00403
United States Department of Agriculture. (2019, January 4). FoodData Central Search Results. Egg, whole, raw, frozen, pasteurized. https://fdc.nal.usda.gov/fdc-app.html#/food-details/323604/nutrients
Van Den Brand, H., Parmentier, H., & Kemp, B. (2010). Effects of housing system (outdoor vs cages) and age of laying hens on egg characteristics. British Poultry Science, 45(6), 745–752. https://doi.org/10.1080/00071660400014283
Yenice, G., Kaynar, O., Ileriturk, M., Hira, F., & Hayirli, A. (2016). Quality of eggs in different production systems. Czech Journal of Food Science, 31(4), 370–376. https://doi.org/10.17221/33/2016-CJFS
Yilmaz Dikmen, B., Ípek, A., Şahan, Ü., Petek, M., & Sözcü, A. (2016). Egg production and welfare of laying hens kept in different housing systems (conventional, enriched cage, and free range). Poultry Science, 95(7), 1564–1572. https://doi.org/10.3382/ps/pew082
Zakaria, A. H., Miyaki, T., & Imai, K. (1983). The effect of aging on ovarian follicle growth in laying hens. Poultry Science, 62(4), 670–674. https://doi.org/10.3382/ps.0620670
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Rodolfo WingChing-Jones, Rebeca Zamora-Sanabria, Sianny Chavarría-Zamora
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).