Semen analysis in precision farming in the 21st century

Authors

DOI:

https://doi.org/10.15517/am.v34i2.51957

Keywords:

animal reproduction, andrology, spermatozoa, semen

Abstract

Introduction. Assisted reproduction of animals traces its origins in the domestication of livestock species useful to humans. The consequent artificial selection processes allowed the development of biotechnological techniques that contributed to the improvement of animal production capacities. Objective. To contextualize the seminal analysis in precision farming in the 21st century. Development. The visualization of spermatozoa under the microscope can be considered as the first step in the advent of reproductive biotechnology and the basis for the development of assisted reproductive techniques. With the improvement of microscopy methods, it was possible to characterize male gametes, which meant a significant advance in artificial insemination technology. The turning point marked by the development of sperm conservation techniques implied a substantive change in the development of these technologies in livestock species, either with cryopreserved or refrigerated semen. These methods are of high value in the case of threatened species since germplasm banks can be created for genetic conservation and rescue of species at risk of extinction. Semen analysis has been developed alongside with assisted reproduction techniques and today it is considered a relevant technique in animal reproduction biotechnology, which has been perfected through the advancement of science and technology, optical physics, and computing. Conclusion. Seminal analysis has undergone a paradigm shift by rejecting obsolete techniques of subjective evaluation of semen quality and adopting objective methods of semen evaluation, through the analysis of large volumes of data and motility, kinematics, morphometrics, morphological, and DNA fragmentation variables, which allow a better characterization of the ejaculates of breeders in artificial insemination centers.

Downloads

Download data is not yet available.

References

Ahmed, H. M. M., Hildebrand, L., & Wimmer, E. A. (2019). Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnology, 19(1). https://doi.org/10.1186/S12896-019-0588-5

Amann, R., & Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. In Theriogenology (Vol. 81, Issue 1, pp. 5-17.e3). Elsevier Inc. https://doi.org/10.1016/j.theriogenology.2013.09.004

Anel-Lopez, L., Ortega-Ferrusola, C., Álvarez, M., Borragán, S., Chamorro, C., Peña, F. J., Morrell, J., Anel, L., & De Paz, P. (2017). Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm. BMC Veterinary Research, 13(200). https://doi.org/10.1186/s12917-017-1124-2

Ataei, A., Lau, · A W C, & Waseem Asghar, ·. (2021). A microfluidic sperm-sorting device based on rheotaxis effect. Microfluidics and Nanofluidics, 25, 52. https://doi.org/10.1007/s10404-021-02453-8

Aurich, J., Kuhl, J., Tichy, A., & Aurich, C. (2020). Efficiency of Semen Cryopreservation in Stallions. Animals : An Open Access Journal from MDPI, 10(6), 1–13. https://doi.org/10.3390/ANI10061033

Bailey, J., Morrier, A., & Cormier, N. (2003). Semen cryopreservation: Successes and persistent problems in farm species. Canadian Journal of Animal Science, 83, 393–401.

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511. https://doi.org/10.1073/PNAS.1711842115/SUPPL_FILE/1711842115.SAPP.PDF

Barbas, J. P., & Mascarenhas, R. D. (2008). Cryopreservation of domestic animal sperm cells. Cell and Tissue Banking 2008 10:1, 10(1), 49–62. https://doi.org/10.1007/S10561-008-9081-4

Barquero, V., Roldan, E. R. S., Soler, C., Vargas-Leitón, B., Sevilla, F., Camacho, M., & Valverde, A. (2021). Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates. Biology, 10(7). https://doi.org/10.3390/BIOLOGY10070595

Barquero, V., Roldan, E. R. S., Soler, C., Yániz, J. L., Camacho, M., & Valverde, A. (2021). Predictive Capacity of Boar Sperm Morphometry and Morphometric Sub-Populations on Reproductive Success after Artificial Insemination. Animals, 11(4), 920. https://doi.org/10.3390/ANI11040920

Barquero, V., Sevilla, F., Calderón-Calderón, J., Madrigal-Valverde, M., Camacho, M., Cucho, H., & Valverde, A. (2021). Condiciones óptimas del análisis CASA-Mot del semen de verraco: efecto de la tasa de fotogramas para diferentes cámaras y campos de recuento espermático. Revista de Investigaciones Veterinarias Del Perú, 32(5), e19832. https://doi.org/10.15381/rivep.v32i5.19832

Barquero, V., Soler, C., Sevilla, F., Calderón-Calderón, J., & Valverde, A. (2021). A Bayesian analysis of boar spermatozoa kinematics and head morphometrics and their relationship with litter size fertility variables. Reproduction in Domestic Animals, 56(7), 1024–1033. https://doi.org/10.1111/RDA.13946

Bhalakiya, N., Haque, N., Patel, D., Chaudhari, A., Patel, G., Madhavatar, M., Patel, P., Hossain, S., & Kumar, R. (2018). Sperm sexing and its application in livestock sector. International Journal of Current Microbiology and Applied Sciences, Special Issue 7, 259–272.

Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., & Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reproduction, Fertility and Development, 30(6), 810–819. https://doi.org/10.1071/RD17551

Bompart, D., Vázquez, R., Gómez, R., Valverde, A., Roldán, E., García-Molina, A., & Soler, C. (2019). Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Animal Reproduction Science, 209, 106169. https://doi.org/10.1016/J.ANIREPROSCI.2019.106169

Bonet, S., Casas, I., Holt, W., & Yeste, M. (2013). Boar reproduction : fundamentals and new biotechnological trends. In Boar Reproduction (1st ed., p. 632). Springer-Verlag Berlin Heidelberg.

Caldeira, C., García-Molina, A., Valverde, A., Bompart, D., Hassane, M., Martin, P., & Soler, C. (2018). Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo salar) parr using a CASA system. Reproduction, Fertility and Development, 30(6), 897–906. https://doi.org/10.1071/RD17466

Caldeira, C., Hernández-Ibáñez, S., Valverde, A., Martin, P., Herranz-Jusdado, J. G., Gallego, V., Asturiano, J. F., Dzyuba, B., Pšenička, M., & Soler, C. (2019). Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture, 502, 223–231. https://doi.org/10.1016/j.aquaculture.2018.12.001

Caldeira, C., Hernández-Ibánez, S., Vendrell, A., Valverde, A., García-Molina, A., Gallego, V., Asturiano, J. F., & Soler, C. (2022). Characterisation of European eel (Anguilla anguilla) spermatozoa morphometry using Trumorph tool in fixed and non-fixed samples. Aquaculture, 553, 738047. https://doi.org/10.1016/J.AQUACULTURE.2022.738047

Castellini, C., Dal Bosco, A., Ruggeri, S., & Collodel, G. (2011). What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertility and Sterility, 96(1), 24–27. https://doi.org/10.1016/j.fertnstert.2011.04.096

Chen, D. Bin, Zhang, R. S., Bian, H. X., Li, Q., Xia, R. X., Li, Y. P., Liu, Y. Q., & Lu, C. (2019). Comparative mitochondrial genomes provide new insights into the true wild progenitor and origin of domestic silkworm Bombyx mori. International Journal of Biological Macromolecules, 131, 176–183. https://doi.org/10.1016/J.IJBIOMAC.2019.03.002

Cherniha, R. M., & Davydovych, V. V. (2019). A hunter-gatherer-farmer population model: Lie symmetries, exact solutions and their interpretation. European Journal of Applied Mathematics, 30(2), 338–357. https://doi.org/10.1017/S0956792518000104

Cohen, I. G., Sherkow, J. S., & Adashi, E. Y. (2020). Gene Editing Sperm and Eggs (not Embryos): Does it Make a Legal or Ethical Difference? The Journal of Law, Medicine & Ethics : A Journal of the American Society of Law, Medicine & Ethics, 48(3), 619–621. https://doi.org/10.1177/1073110520958891

Comizzoli, P. (2017). Biobanking and fertility preservation for rare and endangered species. Animal Reproduction, 14, 30–33.

Contreras, P., Dumorné, K., Ulloa-Rodríguez, P., Merino, O., Figueroa, E., Farías, J. G., Valdebenito, I., & Risopatrón, J. (2020). Effects of short-term storage on sperm function in fish semen: a review. Reviews in Aquaculture, 12(3), 1373–1389. https://doi.org/10.1111/RAQ.12387

Cooper, T., Björndahl, L., Vreeburg, J., & Nieschlag, E. (2002). Semen analysis and external quality control schemes for semen analysis need global standardization. International Journal of Andrology, 25(5), 306–311. http://www.ncbi.nlm.nih.gov/pubmed/12270029

Cooper, T., Yeung, C. H., Fetic, S., Sobhani, A., & Nieschlag, E. (2004). Cytoplasmic droplets are normal structures of human sperm but are not well preserved by routine procedures for assessing sperm morphology. Human Reproduction (Oxford, England), 19(10), 2283–2288. https://doi.org/10.1093/HUMREP/DEH410

Cucho, H., López, Y., Caldeira, C., Valverde, A., Ordóñez, C., & Soler, C. (2019). Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm , using ISAS ® CASA-Morph system. Nova Biologica Reperta, 6(3), 284–291. https://doi.org/10.29252/nbr.6.3.284

De Ambrogi, M., Ballester, J., Saravia, F., Caballero, I., Johannisson, A., Wallgren, M., Andersson, M., & Rodriguez-Martinez, H. (2006). Effect of storage in short- and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa. International Journal of Andrology, 29(5), 543–552. https://doi.org/10.1111/j.1365-2605.2006.00694.x

Del Gallego, R., Sadeghi, S., Blasco, E., Soler, C., Yániz, J., & Silvestre, M. (2017). Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Animal Reproduction Science, 177, 97–104. https://doi.org/10.1016/J.ANIREPROSCI.2016.12.010

Diamond, J. (1997). Guns, Germs, and Steel: The Fates of Human Societies. Norton & Company.

Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature 2002 418:6898, 418(6898), 700–707. https://doi.org/10.1038/nature01019

Dirrigl, F. J., Brush, T., Morales-Muñiz, A., & Bartosiewicz, L. (2020). Prehistoric and historical insights in avian zooarchaeology, taphonomy and ancient bird use. Archaeological and Anthropological Sciences 2020 12:2, 12(2), 1–8. https://doi.org/10.1007/S12520-020-01016-2

Donkin, I., & Barrès, R. (2018). Sperm epigenetics and influence of environmental factors. Molecular Metabolism, 14, 1–11. https://doi.org/10.1016/J.MOLMET.2018.02.006

Dorożyńska, K., & Maj, D. (2021). Rabbits - their domestication and molecular genetics of hair coat development and quality. Animal Genetics, 52(1), 10–20. https://doi.org/10.1111/AGE.13024

Dziekońska, A., Świader, K., Koziorowska-Gilun, M., Mietelska, K., Zasiadczyk, L., & Kordan, W. (2017). Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Polish Journal of Veterinary Sciences, 20(1), 77–84. https://doi.org/10.1515/PJVS-2017-0011

Edwards, R. G., Steptoe, P. C., & Purdy, J. M. (1980). Establishing full-term human pregnancies using cleaving embryos grown in vitro. British Journal of Obstetrics and Gynaecology, 87(9), 737–756. https://doi.org/10.1111/J.1471-0528.1980.TB04610.X

Feugang, J. M., Rhoads, C. E., Mustapha, P. A., Tardif, S., Parrish, J. J., Willard, S. T., & Ryan, P. L. (2019). Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology, 137, 75–81. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.040

Frantz, L. A. F., Bradley, D. G., Larson, G., & Orlando, L. (2020). Animal domestication in the era of ancient genomics. Nature Reviews. Genetics, 21(8), 449–460. https://doi.org/10.1038/S41576-020-0225-0

Gacem, S., Bompart, D., Valverde, A., Catalán, J., Miró, J., & Soler, C. (2020). Optimal frame rate when there were stallion sperm motility evaluations and determinations for kinematic variables using CASA-Mot analysis in different counting chambers. Animal Reproduction Science, 223, 106643. https://doi.org/10.1016/j.anireprosci.2020.106643

Gacem, S., Catalán, J., Valverde, A., Soler, C., & Miró, J. (2020). Optimization of Casa-mot analysis of donkey sperm: Optimum frame rate and values of kinematic variables for different counting chamber and fields. Animals, 10(11). https://doi.org/10.3390/ani10111993

Gallagher, M. T., Cupples, G., Ooi, E. H., Kirkman-Brown, J. C., & Smith, D. J. (2019). Rapid sperm capture: high-throughput flagellar waveform analysis. Human Reproduction, 34(7), 1173–1185. https://doi.org/10.1093/humrep/dez056

García-Herreros, M. (2016). Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris). Asian Journal of Andrology, 18(6), 889–894. https://doi.org/10.4103/1008-682X.188448

García-Molina, A., Cerveró, C., Navarro, N., Sadeghi, S., Bompart, D., Valverde, A., Roldan, E. R. S., Garrido, N., & Soler, C. (2022). Effect of incubation and analysis temperatures on sperm kinematics and morphometrics during human semen analysis. Revista Internacional de Andrología, in press.

Harari, Y. . (2014). Sapiens: A brief history of humankind. Vintage-Books.

Hernández-Caravaca, I., Llamas-López, P. J., Izquierdo-Rico, M. J., Soriano-Úbeda, C., Matás, C., Gardón, J. C., & García-Vázquez, F. A. (2017). Optimization of post-cervical artificial insemination in gilts: Effect of cervical relaxation procedures and catheter type. Theriogenology, 90, 147–152. https://doi.org/10.1016/J.THERIOGENOLOGY.2016.11.027

Holt, W. V., Cummins, J. M., & Soler, C. (2018). Computer-assisted sperm analysis and reproductive science; a gift for understanding gamete biology from multidisciplinary perspectives. Reproduction, Fertility and Development, 30(6), iii–v. https://doi.org/10.1071/RDV30N6_FO

Hunter, P. (2018). The genetics of domestication: Research into the domestication of livestock and companion animals sheds light both on their “evolution” and human history. EMBO Reports, 19(2), 205. https://doi.org/10.15252/EMBR.201745664

Hwang, B., Lee, D., Hwang, S. J., Baek, J. H., & Kim, B. (2019). Rheotaxis Based High-Throughput Motile Sperm Sorting Device. International Journal of Precision Engineering and Manufacturing, 20(6), 1037–1045. https://doi.org/10.1007/S12541-019-00144-7/FIGURES/12

Iftikhar, M., Noureen, A., Uzair, M., Jabeen, F., Daim, M. A., & Cappello, T. (2021). Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. International Journal of Environmental Research and Public Health, 18(4), 1–19. https://doi.org/10.3390/IJERPH18041758

Ivanoff, E. I. (1922). On the use of artificial insemination for zootechnical purposes in Russia. The Journal of Agricultural Science, 12(3), 244–256. https://doi.org/10.1017/S002185960000530X

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press.

Jovičić, M., Chmelíková, E., & Sedmíková, M. (2020). Cryopreservation of boar semen. Czech Journal of Animal Science, 65(04), 115–123. https://doi.org/10.17221/47/2020-CJAS

Karbalaei, A., & Cho, H. J. (2018). Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. Micromachines, 9(4). https://doi.org/10.3390/MI9040149

Kedia, G., Mussweiler, T., & Linden, D. E. J. (2014). Brain mechanisms of social comparison and their influence on the reward system. Neuroreport, 25(16), 1255. https://doi.org/10.1097/WNR.0000000000000255

Khodamoradi, M., Tafti, S. R., Shaegh, S. A. M., Aflatoonian, B., Azimzadeh, M., & Khashayar, P. (2021). Recent Microfluidic Innovations for Sperm Sorting. Chemosensors 2021, Vol. 9, Page 126, 9(6), 126. https://doi.org/10.3390/CHEMOSENSORS9060126

Kruska, D. (1993). Evidence of decrease in brain size in ranch mink, Mustela vison f. dom., during subadult postnatal ontogenesis. Brain, Behavior and Evolution, 41(6), 303–315. https://doi.org/10.1159/000113851

Kurtz, S., & Petersen, B. (2019). Pre-determination of sex in pigs by application of CRISPR/Cas system for genome editing. Theriogenology, 137, 67–74. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.039

Larson, G., & Fuller, D. Q. (2014). The Evolution of Animal Domestication. Http://Dx.Doi.Org/10.1146/Annurev-Ecolsys-110512-135813, 45, 115–136. https://doi.org/10.1146/ANNUREV-ECOLSYS-110512-135813

Leeuwenhoek, A. Van. (1679). Observationes D. Anthonii Lewenhoeck, de natis’e semine genitali animalculis. Philosophical Transactions of the Royal Society of London, 12(142), 1040–1046. https://doi.org/10.1098/RSTL.1677.0068

Magdanz, V., Khalil, I. S. M., Simmchen, J., Furtado, G. P., Mohanty, S., Gebauer, J., Xu, H., Klingner, A., Aziz, A., Medina-Sánchez, M., Schmidt, O. G., & Misra, S. (2020). IRONSperm: Sperm-Templated soft magnetic microrobots. Science Advances, 6(28), 5855–5863. https://doi.org/10.1126/SCIADV.ABA5855/SUPPL_FILE/ABA5855_SM.PDF

Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M. R., Soler, A., & Garde, J. J. (2016). Current status and potential of morphometric sperm analysis. Asian Journal of Andrology, 18(6), 863–870. https://doi.org/10.4103/1008-682X.187581

Martinez-Alborcia, M., Valverde, A., Parrilla, I., Vazquez, J., Martinez, E., & Roca, J. (2012). Detrimental effects of non-functional spermatozoa on the freezability of functional spermatozoa from Boar Ejaculate. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0036550

Marzano, G., Chiriacò, M. S., Primiceri, E., Dell’Aquila, M. E., Ramalho-Santos, J., Zara, V., Ferramosca, A., & Maruccio, G. (2020). Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities. Biotechnology Advances, 40. https://doi.org/10.1016/J.BIOTECHADV.2019.107498

Milovanov, V. K., & Sokolovskaya, I. I. (1947). Stockbreeding and the artificial insemination of livestock. Hutchinson’s Scientific and Technical Publications.

Moore, J. A. (1999). Science as a way of knowing: the foundations of modern Biology. Harvard University Press.

Morrell, J. M., & Rodriguez-Martinez, H. (2011). Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. In Veterinary Medicine International (Vol. 2011). Vet Med Int. https://doi.org/10.4061/2011/894767

Nadri, T., Towhidi, A., Zeinoaldini, S., Martínez-Pastor, F., Mousavi, M., Noei, R., Tar, M., & Mohammadi Sangcheshmeh, A. (2019). Lecithin nanoparticles enhance the cryosurvival of caprine sperm. Theriogenology, 133, 38–44. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.04.024

Neculai-Valeanu, A. S., & Ariton, A. M. (2021). Game-Changing Approaches in Sperm Sex-Sorting: Microfluidics and Nanotechnology. Animals : An Open Access Journal from MDPI, 11(4). https://doi.org/10.3390/ANI11041182

Nosrati, R., Vollmer, M., Eamer, L., San Gabriel, M. C., Zeidan, K., Zini, A., & Sinton, D. (2014). Rapid selection of sperm with high DNA integrity. Lab on a Chip, 14(6), 1142–1150. https://doi.org/10.1039/C3LC51254A

Olden, J. D. (2006). Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 33(12), 2027–2039. https://doi.org/10.1111/J.1365-2699.2006.01572.X

Ombelet, W., & Robays, J. Van. (2015). Artificial insemination history: hurdles and milestones. Facts, Views & Vision in ObGyn, 7(2), 137. /pmc/articles/PMC4498171/

Palermo, G., Joris, H., Devroey, P., & Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet (London, England), 340(8810), 17–18. https://doi.org/10.1016/0140-6736(92)92425-F

Pedrosa, S., Uzun, M., Arranz, J. J., Gutiérrez-Gil, B., San Primitivo, F., & Bayón, Y. (2005). Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2211. https://doi.org/10.1098/RSPB.2005.3204

Pérez-Cerezales, S., Laguna-Barraza, R., De Castro, A. C., Sánchez-Calabuig, M. J., Cano-Oliva, E., De Castro-Pita, F. J., Montoro-Buils, L., Pericuesta, E., Fernández-González, R., & Gutiérrez-Adán, A. (2018). Sperm selection by thermotaxis improves ICSI outcome in mice. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-21335-8

Puerta Suárez, J., du Plessis, S. S., & Cardona Maya, W. D. (2018). Spermatozoa: A Historical Perspective. International Journal of Fertility & Sterility, 12(3), 182. https://doi.org/10.22074/IJFS.2018.5316

Ramón, M., & Martínez-Pastor, F. (2018). Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data. Reproduction, Fertility and Development, 30(6), 860. https://doi.org/10.1071/RD17479

Raveshi, M. R., Abdul Halim, M. S., Agnihotri, S. N., O’Bryan, M. K., Neild, A., & Nosrati, R. (2021). Curvature in the reproductive tract alters sperm–surface interactions. Nature Communications 2021 12:1, 12(1), 1–10. https://doi.org/10.1038/s41467-021-23773-x

Rehkämper, G., Frahm, H. D., & Cnotka, J. (2008). Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain, Behavior and Evolution, 71(2), 115–126. https://doi.org/10.1159/000111458

Rodríguez-Martínez, H., Saravia, F., Wallgren, M., Tienthai, P., Johannisson, A., Vázquez, J. M., Martínez, E., Roca, J., Sanz, L., & Calvete, J. J. (2005). Boar spermatozoa in the oviduct. Theriogenology, 63(2), 514–535. https://doi.org/10.1016/J.THERIOGENOLOGY.2004.09.028

Roldan, E. R. S., Gomendio, M., & Vitullo, A. D. (1992). The evolution of eutherian spermatozoa and underlying selective forces: female selection and sperm competition. Biological Reviews of the Cambridge Philosophical Society, 67(4), 551–593. http://www.ncbi.nlm.nih.gov/pubmed/1463811

Rossi, P. (1990). Francis Bacon. De la magia a la ciencia. Alianza.

Sadeghi, S., García-Molina, A., Celma, F., Valverde, A., Fereidounfar, S., & Soler, C. (2016). Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in human spermatozoa. Asian Journal of Andrology, 18(6), 835–839. https://doi.org/10.4103/1008-682X.186875

Sadeghi, S., Pertusa, J., Yaniz, J. L., Nuñez, J., Soler, C., & Silvestre, M. A. (2018). Effect of different oxidative stress degrees generated by hydrogen peroxide on motility and DNA fragmentation of zebrafish (Danio rerio) spermatozoa. Reproduction in Domestic Animals = Zuchthygiene, 53(6), 1498–1505. https://doi.org/10.1111/RDA.13296

Saint-Dizier, M., Mahé, C., Reynaud, K., Tsikis, G., Mermillod, P., & Druart, X. (2020). Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Molecular and Cellular Endocrinology, 516. https://doi.org/10.1016/J.MCE.2020.110956

Scanes, C. G., & Toukhsati, S. R. (2017). Animals and human society. Animals and Human Society, 1–528. https://doi.org/10.1016/C2014-0-03860-9

Scherf, B. . (2000). World watch list for domestic animal diversity. FAO. https://cgspace.cgiar.org/handle/10568/10343

Schoeller, S. F., Holt, W. V., & Keaveny, E. E. (2020). Collective dynamics of sperm cells. Philosophical Transactions of the Royal Society B, 375(1807). https://doi.org/10.1098/RSTB.2019.0384

Schoeller, S. F., & Keaveny, E. E. (2018). From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions. Journal of The Royal Society Interface, 15(140). https://doi.org/10.1098/RSIF.2017.0834

Selvaraju, S., Parthipan, S., Somashekar, L., Binsila, B. K., Kolte, A. P., Arangasamy, A., Ravindra, J. P., & Krawetz, S. A. (2018). Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Systems Biology in Reproductive Medicine, 64(6), 484–501. https://doi.org/10.1080/19396368.2018.1444816

Sharma, R. S., Saxena, R., & Singh, R. (2018). Infertility & assisted reproduction: A historical & modern scientific perspective. The Indian Journal of Medical Research, 148(Suppl), 10–14. https://doi.org/10.4103/IJMR.IJMR_636_18

Sicuro, B. (2021). World aquaculture diversity: origins and perspectives. Reviews in Aquaculture, 13(3), 1619–1634. https://doi.org/10.1111/RAQ.12537

Singh, A. V., Ansari, M. H. D., Mahajan, M., Srivastava, S., Kashyap, S., Dwivedi, P., Pandit, V., & Katha, U. (2020). Sperm Cell Driven Microrobots-Emerging Opportunities and Challenges for Biologically Inspired Robotic Design. Micromachines, 11(4). https://doi.org/10.3390/MI11040448

Soler, C., Contell, J., Bori, L., Sancho, M., García-Molina, A., Valverde, A., & Segarvall, J. (2017). Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus). Asian Journal of Andrology, 19(2), 154–159. https://doi.org/10.4103/1008-682X.188445

Soler, C., & Cooper, T. (2016). Foreword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 815–818. https://doi.org/10.4103/1008-682X.187582

Soler, C., Cooper, T., Valverde, A., & Yániz, J. (2016). Afterword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 895–897. https://doi.org/10.4103/1008-682X.188451

Soler, C., García-Molina, A., Contell, J., Silvestre, M., & Sancho, M. (2015). The Trumorph℗® system: The new universal technique for the observation and analysis of the morphology of living sperm. Animal Reproduction Science, 158, 1–10. https://doi.org/10.1016/J.ANIREPROSCI.2015.04.001

Soler, C., García-Molina, A., Sancho, M., Contell, J., Núñez, M., & Cooper, T. (2016). A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reproduction, Fertility, and Development, 28(4), 428–433. https://doi.org/10.1071/RD14087

Soler, C., Picazo-Bueno, J., Micó, V., Valverde, A., Bompart, D., Blasco, F. J., Alvarez, J. G., & García-Molina, A. (2018). Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reproduction, Fertility and Development, 30(6), 924–934. https://doi.org/10.1071/RD17467

Soler, C., Valverde, A., Bompart, D., Fereidounfar, S., Sancho, M., Yániz, J., Garcia-Molina, A., & Korneenko-Zhilyaev, Y. . (2017). New methods of semen analysis by casa. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology), 52(2). https://doi.org/10.15389/agrobiology.2017.2.232eng

Stickney, R. R. (1990). A global overview of aquaculture production. Food Reviews International, 6(3), 299–315. https://doi.org/10.1080/87559129009540874

Teletchea, F. (2019). Animal Domestication. In Animal Domestication. IntechOpen Ltd. https://doi.org/10.5772/67910

Teletchea, F., & Fontaine, P. (2014). Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries, 15(2), 181–195. https://doi.org/10.1111/FAF.12006

Tung, C. K., Lin, C., Harvey, B., Fiore, A. G., Ardon, F., Wu, M., & Suarez, S. S. (2017). Fluid viscoelasticity promotes collective swimming of sperm. Scientific Reports 2017 7:1, 7(1), 1–9. https://doi.org/10.1038/s41598-017-03341-4

Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in Cryopreservation of Bull Sperm. Frontiers in Veterinary Science, 6, 268. https://doi.org/10.3389/FVETS.2019.00268/BIBTEX

Valverde, A., Areán, H., Fernández, A., Bompart, D., García‐Molina, A., López‐Viana, J., & Soler, C. (2019). Combined effect of type and capture area of counting chamber and diluent on Holstein bull sperm kinematics. Andrologia, 51(4), e13223. https://doi.org/10.1111/and.13223

Valverde, A., Arenán, H., Sancho, M., Contell, J., Yániz, J., Fernández, A., & Soler, C. (2016). Morphometry and subpopulation structure of Holstein bull spermatozoa: Variations in ejaculates and cryopreservation straws. Asian Journal of Andrology, 18(6), 851–857. https://doi.org/10.4103/1008-682X.187579

Valverde, A., Barquero, V., & Soler, C. (2020). The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences, 29(3). https://doi.org/10.22358/JAFS/127691/2020

Valverde, A., & Madrigal-Valverde, M. (2018). Computer-assisted semen analysis systems in animal reproduction. Agronomía Mesoamericana, 29(2), 469–484. https://doi.org/10.15517/ma.v29i2.29852

Valverde, A., & Madrigal-Valverde, M. (2019). Evaluación de cámaras de recuento sobre parámetros espermáticos de verracos analizados con un sistema CASA-Mot. Agronomía Mesoamericana, 30(2), 447–458. https://doi.org/10.15517/am.v30i1.34145

Valverde, A., Madrigal-Valverde, M., Caldeira, C., Bompart, D., Núñez de Murga, J., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analyzed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320

Valverde, A., Madrigal-Valverde, M., Lotz, J., Bompart, D., & Soler, C. (2019). Effect of video capture time on sperm kinematic parameters in breeding boars. Livestock Science, 220. https://doi.org/10.1016/j.livsci.2018.12.008

Valverde, A., Madrigal, M., Caldeira, C., Bompart, D., de Murga, J. N., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320

Vasilescu, S. A., Khorsandi, S., Ding, L., Bazaz, S. R., Nosrati, R., Gook, D., & Warkiani, M. E. (2021). A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-87046-9

Vasquez, E. S., Feugang, J. M., Willard, S. T., Ryan, P. L., & Walters, K. B. (2016). Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. Journal of Nanobiotechnology, 14(1), 1–9. https://doi.org/10.1186/S12951-016-0168-Y/FIGURES/6

Víquez, L., Barquero, V., Soler, C., Roldan, E. R. S., & Valverde, A. (2020). Kinematic Sub-Populations in Bull Spermatozoa: A Comparison of Classical and Bayesian Approaches. Biology, 9(6), 138. https://doi.org/10.3390/biology9060138

Víquez, L., Barquero, V., & Valverde, A. (2021). Optimal conditions for the kinematic analysis in fresh semen of Brahman bulls with a CASA-Mot system. Agronomía Mesoamericana, 32(3), 920–938. https://doi.org/10.15517/AM.V32I3.42768

Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., Simões, Z. L. P., Allsopp, M. H., Kandemir, I., De La Rúa, P., Pirk, C. W., & Webster, M. T. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics 2014 46:10, 46(10), 1081–1088. https://doi.org/10.1038/ng.3077

Williams, B. (1996). Descartes. El Proyecto de una investigación pura. Cátedra.

Wongtawan, T., Dararatana, N., Thongkittidilok, C., Kornmatitsuk, S., & Oonkhanond, B. (2020). Enrichment of bovine X-sperm using microfluidic dielectrophoretic chip: A proof-of- concept study. Heliyon, 6(11), e05483. https://doi.org/10.1016/J.HELIYON.2020.E05483

World Health Organization. (2021). World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th ed. In H. World Health Organization (Ed.), WHO Press (6th ed.). World Health Organization, Department of Reproductive Health and Research. https://www.who.int/publications/i/item/9789240030787

Xiao, S., & Xia, L. (2016). Quantity versus quality: the sperm war. Asian Journal of Andrology, 18(6), 900. https://doi.org/10.4103/1008-682X.185849

Yániz, J., Soler, C., Alquézar-Baeta, C., & Santolaria, P. (2017). Toward an integrative and predictive sperm quality analysis in Bos taurus. Animal Reproduction Science, 181, 108–114. https://doi.org/10.1016/j.anireprosci.2017.03.022

Published

2023-01-30

How to Cite

Soler, C., & Valverde, A. (2023). Semen analysis in precision farming in the 21st century. Agronomía Mesoamericana, 34(2), 51957. https://doi.org/10.15517/am.v34i2.51957