El análisis seminal en la agricultura de precisión en el siglo XXI
DOI:
https://doi.org/10.15517/am.v34i2.51957Palabras clave:
reproducción animal, andrología, espermatozoo, semenResumen
Introducción. La reproducción asistida de animales tiene su origen en la domesticación de las especies ganaderas útiles al ser humano. Los consiguientes procesos de selección artificial permitieron desarrollar técnicas biotecnológicas que contribuyeron a la mejora de las capacidades de producción animal. Objetivo. Contextualizar el análisis seminal en la agricultura de precisión en el siglo XXI. Desarrollo. La visualización de espermatozoides en el microscopio puede considerarse como el primer paso en el advenimiento de la biotecnología de la reproducción y la base para el desarrollo de las técnicas de reproducción asistida. Con el perfeccionamiento de los métodos de microscopía, se logró caracterizar los gametos masculinos, lo que significó un avance significativo en la tecnología de inseminación artificial. El punto de inflexión marcado por el desarrollo de técnicas de conservación espermática, implicó un cambio sustantivo en el desarrollo de estas tecnologías en las especies ganaderas, ya sea con semen crio preservado o refrigerado. Estos métodos son de alto valor en el caso de especies amenazadas, dado que se pueden crear bancos de germoplasma con propósitos de conservación genética y rescate de especies en riesgo de extinción. El análisis seminal se ha desarrollado de forma paralela con las técnicas de reproducción asistida, al punto que hoy se considera como una técnica relevante en la biotecnología de la reproducción animal, que se ha perfeccionado mediante el avance de la ciencia y la tecnología, la física óptica y la computación. Conclusión. El análisis seminal ha tenido un cambio de paradigma al desechar técnicas obsoletas de evaluación subjetiva de la calidad seminal y adoptar métodos objetivos de evaluación del semen, mediante el análisis de grandes volúmenes de datos y variables de movilidad, cinéticas, morfométricas, morfológicas y fragmentación del ADN, que permiten caracterizar mejor los eyaculados de los reproductores en centros de inseminación artificial.
Descargas
Citas
Ahmed, H. M. M., Hildebrand, L., & Wimmer, E. A. (2019). Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnology, 19(1). https://doi.org/10.1186/S12896-019-0588-5
Amann, R., & Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. In Theriogenology (Vol. 81, Issue 1, pp. 5-17.e3). Elsevier Inc. https://doi.org/10.1016/j.theriogenology.2013.09.004
Anel-Lopez, L., Ortega-Ferrusola, C., Álvarez, M., Borragán, S., Chamorro, C., Peña, F. J., Morrell, J., Anel, L., & De Paz, P. (2017). Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm. BMC Veterinary Research, 13(200). https://doi.org/10.1186/s12917-017-1124-2
Ataei, A., Lau, · A W C, & Waseem Asghar, ·. (2021). A microfluidic sperm-sorting device based on rheotaxis effect. Microfluidics and Nanofluidics, 25, 52. https://doi.org/10.1007/s10404-021-02453-8
Aurich, J., Kuhl, J., Tichy, A., & Aurich, C. (2020). Efficiency of Semen Cryopreservation in Stallions. Animals : An Open Access Journal from MDPI, 10(6), 1–13. https://doi.org/10.3390/ANI10061033
Bailey, J., Morrier, A., & Cormier, N. (2003). Semen cryopreservation: Successes and persistent problems in farm species. Canadian Journal of Animal Science, 83, 393–401.
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511. https://doi.org/10.1073/PNAS.1711842115/SUPPL_FILE/1711842115.SAPP.PDF
Barbas, J. P., & Mascarenhas, R. D. (2008). Cryopreservation of domestic animal sperm cells. Cell and Tissue Banking 2008 10:1, 10(1), 49–62. https://doi.org/10.1007/S10561-008-9081-4
Barquero, V., Roldan, E. R. S., Soler, C., Vargas-Leitón, B., Sevilla, F., Camacho, M., & Valverde, A. (2021). Relationship between Fertility Traits and Kinematics in Clusters of Boar Ejaculates. Biology, 10(7). https://doi.org/10.3390/BIOLOGY10070595
Barquero, V., Roldan, E. R. S., Soler, C., Yániz, J. L., Camacho, M., & Valverde, A. (2021). Predictive Capacity of Boar Sperm Morphometry and Morphometric Sub-Populations on Reproductive Success after Artificial Insemination. Animals, 11(4), 920. https://doi.org/10.3390/ANI11040920
Barquero, V., Sevilla, F., Calderón-Calderón, J., Madrigal-Valverde, M., Camacho, M., Cucho, H., & Valverde, A. (2021). Condiciones óptimas del análisis CASA-Mot del semen de verraco: efecto de la tasa de fotogramas para diferentes cámaras y campos de recuento espermático. Revista de Investigaciones Veterinarias Del Perú, 32(5), e19832. https://doi.org/10.15381/rivep.v32i5.19832
Barquero, V., Soler, C., Sevilla, F., Calderón-Calderón, J., & Valverde, A. (2021). A Bayesian analysis of boar spermatozoa kinematics and head morphometrics and their relationship with litter size fertility variables. Reproduction in Domestic Animals, 56(7), 1024–1033. https://doi.org/10.1111/RDA.13946
Bhalakiya, N., Haque, N., Patel, D., Chaudhari, A., Patel, G., Madhavatar, M., Patel, P., Hossain, S., & Kumar, R. (2018). Sperm sexing and its application in livestock sector. International Journal of Current Microbiology and Applied Sciences, Special Issue 7, 259–272.
Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., & Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reproduction, Fertility and Development, 30(6), 810–819. https://doi.org/10.1071/RD17551
Bompart, D., Vázquez, R., Gómez, R., Valverde, A., Roldán, E., García-Molina, A., & Soler, C. (2019). Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Animal Reproduction Science, 209, 106169. https://doi.org/10.1016/J.ANIREPROSCI.2019.106169
Bonet, S., Casas, I., Holt, W., & Yeste, M. (2013). Boar reproduction : fundamentals and new biotechnological trends. In Boar Reproduction (1st ed., p. 632). Springer-Verlag Berlin Heidelberg.
Caldeira, C., García-Molina, A., Valverde, A., Bompart, D., Hassane, M., Martin, P., & Soler, C. (2018). Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo salar) parr using a CASA system. Reproduction, Fertility and Development, 30(6), 897–906. https://doi.org/10.1071/RD17466
Caldeira, C., Hernández-Ibáñez, S., Valverde, A., Martin, P., Herranz-Jusdado, J. G., Gallego, V., Asturiano, J. F., Dzyuba, B., Pšenička, M., & Soler, C. (2019). Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture, 502, 223–231. https://doi.org/10.1016/j.aquaculture.2018.12.001
Caldeira, C., Hernández-Ibánez, S., Vendrell, A., Valverde, A., García-Molina, A., Gallego, V., Asturiano, J. F., & Soler, C. (2022). Characterisation of European eel (Anguilla anguilla) spermatozoa morphometry using Trumorph tool in fixed and non-fixed samples. Aquaculture, 553, 738047. https://doi.org/10.1016/J.AQUACULTURE.2022.738047
Castellini, C., Dal Bosco, A., Ruggeri, S., & Collodel, G. (2011). What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertility and Sterility, 96(1), 24–27. https://doi.org/10.1016/j.fertnstert.2011.04.096
Chen, D. Bin, Zhang, R. S., Bian, H. X., Li, Q., Xia, R. X., Li, Y. P., Liu, Y. Q., & Lu, C. (2019). Comparative mitochondrial genomes provide new insights into the true wild progenitor and origin of domestic silkworm Bombyx mori. International Journal of Biological Macromolecules, 131, 176–183. https://doi.org/10.1016/J.IJBIOMAC.2019.03.002
Cherniha, R. M., & Davydovych, V. V. (2019). A hunter-gatherer-farmer population model: Lie symmetries, exact solutions and their interpretation. European Journal of Applied Mathematics, 30(2), 338–357. https://doi.org/10.1017/S0956792518000104
Cohen, I. G., Sherkow, J. S., & Adashi, E. Y. (2020). Gene Editing Sperm and Eggs (not Embryos): Does it Make a Legal or Ethical Difference? The Journal of Law, Medicine & Ethics : A Journal of the American Society of Law, Medicine & Ethics, 48(3), 619–621. https://doi.org/10.1177/1073110520958891
Comizzoli, P. (2017). Biobanking and fertility preservation for rare and endangered species. Animal Reproduction, 14, 30–33.
Contreras, P., Dumorné, K., Ulloa-Rodríguez, P., Merino, O., Figueroa, E., Farías, J. G., Valdebenito, I., & Risopatrón, J. (2020). Effects of short-term storage on sperm function in fish semen: a review. Reviews in Aquaculture, 12(3), 1373–1389. https://doi.org/10.1111/RAQ.12387
Cooper, T., Björndahl, L., Vreeburg, J., & Nieschlag, E. (2002). Semen analysis and external quality control schemes for semen analysis need global standardization. International Journal of Andrology, 25(5), 306–311. http://www.ncbi.nlm.nih.gov/pubmed/12270029
Cooper, T., Yeung, C. H., Fetic, S., Sobhani, A., & Nieschlag, E. (2004). Cytoplasmic droplets are normal structures of human sperm but are not well preserved by routine procedures for assessing sperm morphology. Human Reproduction (Oxford, England), 19(10), 2283–2288. https://doi.org/10.1093/HUMREP/DEH410
Cucho, H., López, Y., Caldeira, C., Valverde, A., Ordóñez, C., & Soler, C. (2019). Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm , using ISAS ® CASA-Morph system. Nova Biologica Reperta, 6(3), 284–291. https://doi.org/10.29252/nbr.6.3.284
De Ambrogi, M., Ballester, J., Saravia, F., Caballero, I., Johannisson, A., Wallgren, M., Andersson, M., & Rodriguez-Martinez, H. (2006). Effect of storage in short- and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa. International Journal of Andrology, 29(5), 543–552. https://doi.org/10.1111/j.1365-2605.2006.00694.x
Del Gallego, R., Sadeghi, S., Blasco, E., Soler, C., Yániz, J., & Silvestre, M. (2017). Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Animal Reproduction Science, 177, 97–104. https://doi.org/10.1016/J.ANIREPROSCI.2016.12.010
Diamond, J. (1997). Guns, Germs, and Steel: The Fates of Human Societies. Norton & Company.
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature 2002 418:6898, 418(6898), 700–707. https://doi.org/10.1038/nature01019
Dirrigl, F. J., Brush, T., Morales-Muñiz, A., & Bartosiewicz, L. (2020). Prehistoric and historical insights in avian zooarchaeology, taphonomy and ancient bird use. Archaeological and Anthropological Sciences 2020 12:2, 12(2), 1–8. https://doi.org/10.1007/S12520-020-01016-2
Donkin, I., & Barrès, R. (2018). Sperm epigenetics and influence of environmental factors. Molecular Metabolism, 14, 1–11. https://doi.org/10.1016/J.MOLMET.2018.02.006
Dorożyńska, K., & Maj, D. (2021). Rabbits - their domestication and molecular genetics of hair coat development and quality. Animal Genetics, 52(1), 10–20. https://doi.org/10.1111/AGE.13024
Dziekońska, A., Świader, K., Koziorowska-Gilun, M., Mietelska, K., Zasiadczyk, L., & Kordan, W. (2017). Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Polish Journal of Veterinary Sciences, 20(1), 77–84. https://doi.org/10.1515/PJVS-2017-0011
Edwards, R. G., Steptoe, P. C., & Purdy, J. M. (1980). Establishing full-term human pregnancies using cleaving embryos grown in vitro. British Journal of Obstetrics and Gynaecology, 87(9), 737–756. https://doi.org/10.1111/J.1471-0528.1980.TB04610.X
Feugang, J. M., Rhoads, C. E., Mustapha, P. A., Tardif, S., Parrish, J. J., Willard, S. T., & Ryan, P. L. (2019). Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology, 137, 75–81. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.040
Frantz, L. A. F., Bradley, D. G., Larson, G., & Orlando, L. (2020). Animal domestication in the era of ancient genomics. Nature Reviews. Genetics, 21(8), 449–460. https://doi.org/10.1038/S41576-020-0225-0
Gacem, S., Bompart, D., Valverde, A., Catalán, J., Miró, J., & Soler, C. (2020). Optimal frame rate when there were stallion sperm motility evaluations and determinations for kinematic variables using CASA-Mot analysis in different counting chambers. Animal Reproduction Science, 223, 106643. https://doi.org/10.1016/j.anireprosci.2020.106643
Gacem, S., Catalán, J., Valverde, A., Soler, C., & Miró, J. (2020). Optimization of Casa-mot analysis of donkey sperm: Optimum frame rate and values of kinematic variables for different counting chamber and fields. Animals, 10(11). https://doi.org/10.3390/ani10111993
Gallagher, M. T., Cupples, G., Ooi, E. H., Kirkman-Brown, J. C., & Smith, D. J. (2019). Rapid sperm capture: high-throughput flagellar waveform analysis. Human Reproduction, 34(7), 1173–1185. https://doi.org/10.1093/humrep/dez056
García-Herreros, M. (2016). Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris). Asian Journal of Andrology, 18(6), 889–894. https://doi.org/10.4103/1008-682X.188448
García-Molina, A., Cerveró, C., Navarro, N., Sadeghi, S., Bompart, D., Valverde, A., Roldan, E. R. S., Garrido, N., & Soler, C. (2022). Effect of incubation and analysis temperatures on sperm kinematics and morphometrics during human semen analysis. Revista Internacional de Andrología, in press.
Harari, Y. . (2014). Sapiens: A brief history of humankind. Vintage-Books.
Hernández-Caravaca, I., Llamas-López, P. J., Izquierdo-Rico, M. J., Soriano-Úbeda, C., Matás, C., Gardón, J. C., & García-Vázquez, F. A. (2017). Optimization of post-cervical artificial insemination in gilts: Effect of cervical relaxation procedures and catheter type. Theriogenology, 90, 147–152. https://doi.org/10.1016/J.THERIOGENOLOGY.2016.11.027
Holt, W. V., Cummins, J. M., & Soler, C. (2018). Computer-assisted sperm analysis and reproductive science; a gift for understanding gamete biology from multidisciplinary perspectives. Reproduction, Fertility and Development, 30(6), iii–v. https://doi.org/10.1071/RDV30N6_FO
Hunter, P. (2018). The genetics of domestication: Research into the domestication of livestock and companion animals sheds light both on their “evolution” and human history. EMBO Reports, 19(2), 205. https://doi.org/10.15252/EMBR.201745664
Hwang, B., Lee, D., Hwang, S. J., Baek, J. H., & Kim, B. (2019). Rheotaxis Based High-Throughput Motile Sperm Sorting Device. International Journal of Precision Engineering and Manufacturing, 20(6), 1037–1045. https://doi.org/10.1007/S12541-019-00144-7/FIGURES/12
Iftikhar, M., Noureen, A., Uzair, M., Jabeen, F., Daim, M. A., & Cappello, T. (2021). Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. International Journal of Environmental Research and Public Health, 18(4), 1–19. https://doi.org/10.3390/IJERPH18041758
Ivanoff, E. I. (1922). On the use of artificial insemination for zootechnical purposes in Russia. The Journal of Agricultural Science, 12(3), 244–256. https://doi.org/10.1017/S002185960000530X
Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press.
Jovičić, M., Chmelíková, E., & Sedmíková, M. (2020). Cryopreservation of boar semen. Czech Journal of Animal Science, 65(04), 115–123. https://doi.org/10.17221/47/2020-CJAS
Karbalaei, A., & Cho, H. J. (2018). Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. Micromachines, 9(4). https://doi.org/10.3390/MI9040149
Kedia, G., Mussweiler, T., & Linden, D. E. J. (2014). Brain mechanisms of social comparison and their influence on the reward system. Neuroreport, 25(16), 1255. https://doi.org/10.1097/WNR.0000000000000255
Khodamoradi, M., Tafti, S. R., Shaegh, S. A. M., Aflatoonian, B., Azimzadeh, M., & Khashayar, P. (2021). Recent Microfluidic Innovations for Sperm Sorting. Chemosensors 2021, Vol. 9, Page 126, 9(6), 126. https://doi.org/10.3390/CHEMOSENSORS9060126
Kruska, D. (1993). Evidence of decrease in brain size in ranch mink, Mustela vison f. dom., during subadult postnatal ontogenesis. Brain, Behavior and Evolution, 41(6), 303–315. https://doi.org/10.1159/000113851
Kurtz, S., & Petersen, B. (2019). Pre-determination of sex in pigs by application of CRISPR/Cas system for genome editing. Theriogenology, 137, 67–74. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.039
Larson, G., & Fuller, D. Q. (2014). The Evolution of Animal Domestication. Http://Dx.Doi.Org/10.1146/Annurev-Ecolsys-110512-135813, 45, 115–136. https://doi.org/10.1146/ANNUREV-ECOLSYS-110512-135813
Leeuwenhoek, A. Van. (1679). Observationes D. Anthonii Lewenhoeck, de natis’e semine genitali animalculis. Philosophical Transactions of the Royal Society of London, 12(142), 1040–1046. https://doi.org/10.1098/RSTL.1677.0068
Magdanz, V., Khalil, I. S. M., Simmchen, J., Furtado, G. P., Mohanty, S., Gebauer, J., Xu, H., Klingner, A., Aziz, A., Medina-Sánchez, M., Schmidt, O. G., & Misra, S. (2020). IRONSperm: Sperm-Templated soft magnetic microrobots. Science Advances, 6(28), 5855–5863. https://doi.org/10.1126/SCIADV.ABA5855/SUPPL_FILE/ABA5855_SM.PDF
Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M. R., Soler, A., & Garde, J. J. (2016). Current status and potential of morphometric sperm analysis. Asian Journal of Andrology, 18(6), 863–870. https://doi.org/10.4103/1008-682X.187581
Martinez-Alborcia, M., Valverde, A., Parrilla, I., Vazquez, J., Martinez, E., & Roca, J. (2012). Detrimental effects of non-functional spermatozoa on the freezability of functional spermatozoa from Boar Ejaculate. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0036550
Marzano, G., Chiriacò, M. S., Primiceri, E., Dell’Aquila, M. E., Ramalho-Santos, J., Zara, V., Ferramosca, A., & Maruccio, G. (2020). Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities. Biotechnology Advances, 40. https://doi.org/10.1016/J.BIOTECHADV.2019.107498
Milovanov, V. K., & Sokolovskaya, I. I. (1947). Stockbreeding and the artificial insemination of livestock. Hutchinson’s Scientific and Technical Publications.
Moore, J. A. (1999). Science as a way of knowing: the foundations of modern Biology. Harvard University Press.
Morrell, J. M., & Rodriguez-Martinez, H. (2011). Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. In Veterinary Medicine International (Vol. 2011). Vet Med Int. https://doi.org/10.4061/2011/894767
Nadri, T., Towhidi, A., Zeinoaldini, S., Martínez-Pastor, F., Mousavi, M., Noei, R., Tar, M., & Mohammadi Sangcheshmeh, A. (2019). Lecithin nanoparticles enhance the cryosurvival of caprine sperm. Theriogenology, 133, 38–44. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.04.024
Neculai-Valeanu, A. S., & Ariton, A. M. (2021). Game-Changing Approaches in Sperm Sex-Sorting: Microfluidics and Nanotechnology. Animals : An Open Access Journal from MDPI, 11(4). https://doi.org/10.3390/ANI11041182
Nosrati, R., Vollmer, M., Eamer, L., San Gabriel, M. C., Zeidan, K., Zini, A., & Sinton, D. (2014). Rapid selection of sperm with high DNA integrity. Lab on a Chip, 14(6), 1142–1150. https://doi.org/10.1039/C3LC51254A
Olden, J. D. (2006). Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 33(12), 2027–2039. https://doi.org/10.1111/J.1365-2699.2006.01572.X
Ombelet, W., & Robays, J. Van. (2015). Artificial insemination history: hurdles and milestones. Facts, Views & Vision in ObGyn, 7(2), 137. /pmc/articles/PMC4498171/
Palermo, G., Joris, H., Devroey, P., & Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet (London, England), 340(8810), 17–18. https://doi.org/10.1016/0140-6736(92)92425-F
Pedrosa, S., Uzun, M., Arranz, J. J., Gutiérrez-Gil, B., San Primitivo, F., & Bayón, Y. (2005). Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2211. https://doi.org/10.1098/RSPB.2005.3204
Pérez-Cerezales, S., Laguna-Barraza, R., De Castro, A. C., Sánchez-Calabuig, M. J., Cano-Oliva, E., De Castro-Pita, F. J., Montoro-Buils, L., Pericuesta, E., Fernández-González, R., & Gutiérrez-Adán, A. (2018). Sperm selection by thermotaxis improves ICSI outcome in mice. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-21335-8
Puerta Suárez, J., du Plessis, S. S., & Cardona Maya, W. D. (2018). Spermatozoa: A Historical Perspective. International Journal of Fertility & Sterility, 12(3), 182. https://doi.org/10.22074/IJFS.2018.5316
Ramón, M., & Martínez-Pastor, F. (2018). Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data. Reproduction, Fertility and Development, 30(6), 860. https://doi.org/10.1071/RD17479
Raveshi, M. R., Abdul Halim, M. S., Agnihotri, S. N., O’Bryan, M. K., Neild, A., & Nosrati, R. (2021). Curvature in the reproductive tract alters sperm–surface interactions. Nature Communications 2021 12:1, 12(1), 1–10. https://doi.org/10.1038/s41467-021-23773-x
Rehkämper, G., Frahm, H. D., & Cnotka, J. (2008). Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain, Behavior and Evolution, 71(2), 115–126. https://doi.org/10.1159/000111458
Rodríguez-Martínez, H., Saravia, F., Wallgren, M., Tienthai, P., Johannisson, A., Vázquez, J. M., Martínez, E., Roca, J., Sanz, L., & Calvete, J. J. (2005). Boar spermatozoa in the oviduct. Theriogenology, 63(2), 514–535. https://doi.org/10.1016/J.THERIOGENOLOGY.2004.09.028
Roldan, E. R. S., Gomendio, M., & Vitullo, A. D. (1992). The evolution of eutherian spermatozoa and underlying selective forces: female selection and sperm competition. Biological Reviews of the Cambridge Philosophical Society, 67(4), 551–593. http://www.ncbi.nlm.nih.gov/pubmed/1463811
Rossi, P. (1990). Francis Bacon. De la magia a la ciencia. Alianza.
Sadeghi, S., García-Molina, A., Celma, F., Valverde, A., Fereidounfar, S., & Soler, C. (2016). Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in human spermatozoa. Asian Journal of Andrology, 18(6), 835–839. https://doi.org/10.4103/1008-682X.186875
Sadeghi, S., Pertusa, J., Yaniz, J. L., Nuñez, J., Soler, C., & Silvestre, M. A. (2018). Effect of different oxidative stress degrees generated by hydrogen peroxide on motility and DNA fragmentation of zebrafish (Danio rerio) spermatozoa. Reproduction in Domestic Animals = Zuchthygiene, 53(6), 1498–1505. https://doi.org/10.1111/RDA.13296
Saint-Dizier, M., Mahé, C., Reynaud, K., Tsikis, G., Mermillod, P., & Druart, X. (2020). Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Molecular and Cellular Endocrinology, 516. https://doi.org/10.1016/J.MCE.2020.110956
Scanes, C. G., & Toukhsati, S. R. (2017). Animals and human society. Animals and Human Society, 1–528. https://doi.org/10.1016/C2014-0-03860-9
Scherf, B. . (2000). World watch list for domestic animal diversity. FAO. https://cgspace.cgiar.org/handle/10568/10343
Schoeller, S. F., Holt, W. V., & Keaveny, E. E. (2020). Collective dynamics of sperm cells. Philosophical Transactions of the Royal Society B, 375(1807). https://doi.org/10.1098/RSTB.2019.0384
Schoeller, S. F., & Keaveny, E. E. (2018). From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions. Journal of The Royal Society Interface, 15(140). https://doi.org/10.1098/RSIF.2017.0834
Selvaraju, S., Parthipan, S., Somashekar, L., Binsila, B. K., Kolte, A. P., Arangasamy, A., Ravindra, J. P., & Krawetz, S. A. (2018). Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Systems Biology in Reproductive Medicine, 64(6), 484–501. https://doi.org/10.1080/19396368.2018.1444816
Sharma, R. S., Saxena, R., & Singh, R. (2018). Infertility & assisted reproduction: A historical & modern scientific perspective. The Indian Journal of Medical Research, 148(Suppl), 10–14. https://doi.org/10.4103/IJMR.IJMR_636_18
Sicuro, B. (2021). World aquaculture diversity: origins and perspectives. Reviews in Aquaculture, 13(3), 1619–1634. https://doi.org/10.1111/RAQ.12537
Singh, A. V., Ansari, M. H. D., Mahajan, M., Srivastava, S., Kashyap, S., Dwivedi, P., Pandit, V., & Katha, U. (2020). Sperm Cell Driven Microrobots-Emerging Opportunities and Challenges for Biologically Inspired Robotic Design. Micromachines, 11(4). https://doi.org/10.3390/MI11040448
Soler, C., Contell, J., Bori, L., Sancho, M., García-Molina, A., Valverde, A., & Segarvall, J. (2017). Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus). Asian Journal of Andrology, 19(2), 154–159. https://doi.org/10.4103/1008-682X.188445
Soler, C., & Cooper, T. (2016). Foreword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 815–818. https://doi.org/10.4103/1008-682X.187582
Soler, C., Cooper, T., Valverde, A., & Yániz, J. (2016). Afterword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 895–897. https://doi.org/10.4103/1008-682X.188451
Soler, C., García-Molina, A., Contell, J., Silvestre, M., & Sancho, M. (2015). The Trumorph℗® system: The new universal technique for the observation and analysis of the morphology of living sperm. Animal Reproduction Science, 158, 1–10. https://doi.org/10.1016/J.ANIREPROSCI.2015.04.001
Soler, C., García-Molina, A., Sancho, M., Contell, J., Núñez, M., & Cooper, T. (2016). A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reproduction, Fertility, and Development, 28(4), 428–433. https://doi.org/10.1071/RD14087
Soler, C., Picazo-Bueno, J., Micó, V., Valverde, A., Bompart, D., Blasco, F. J., Alvarez, J. G., & García-Molina, A. (2018). Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reproduction, Fertility and Development, 30(6), 924–934. https://doi.org/10.1071/RD17467
Soler, C., Valverde, A., Bompart, D., Fereidounfar, S., Sancho, M., Yániz, J., Garcia-Molina, A., & Korneenko-Zhilyaev, Y. . (2017). New methods of semen analysis by casa. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology), 52(2). https://doi.org/10.15389/agrobiology.2017.2.232eng
Stickney, R. R. (1990). A global overview of aquaculture production. Food Reviews International, 6(3), 299–315. https://doi.org/10.1080/87559129009540874
Teletchea, F. (2019). Animal Domestication. In Animal Domestication. IntechOpen Ltd. https://doi.org/10.5772/67910
Teletchea, F., & Fontaine, P. (2014). Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries, 15(2), 181–195. https://doi.org/10.1111/FAF.12006
Tung, C. K., Lin, C., Harvey, B., Fiore, A. G., Ardon, F., Wu, M., & Suarez, S. S. (2017). Fluid viscoelasticity promotes collective swimming of sperm. Scientific Reports 2017 7:1, 7(1), 1–9. https://doi.org/10.1038/s41598-017-03341-4
Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in Cryopreservation of Bull Sperm. Frontiers in Veterinary Science, 6, 268. https://doi.org/10.3389/FVETS.2019.00268/BIBTEX
Valverde, A., Areán, H., Fernández, A., Bompart, D., García‐Molina, A., López‐Viana, J., & Soler, C. (2019). Combined effect of type and capture area of counting chamber and diluent on Holstein bull sperm kinematics. Andrologia, 51(4), e13223. https://doi.org/10.1111/and.13223
Valverde, A., Arenán, H., Sancho, M., Contell, J., Yániz, J., Fernández, A., & Soler, C. (2016). Morphometry and subpopulation structure of Holstein bull spermatozoa: Variations in ejaculates and cryopreservation straws. Asian Journal of Andrology, 18(6), 851–857. https://doi.org/10.4103/1008-682X.187579
Valverde, A., Barquero, V., & Soler, C. (2020). The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences, 29(3). https://doi.org/10.22358/JAFS/127691/2020
Valverde, A., & Madrigal-Valverde, M. (2018). Computer-assisted semen analysis systems in animal reproduction. Agronomía Mesoamericana, 29(2), 469–484. https://doi.org/10.15517/ma.v29i2.29852
Valverde, A., & Madrigal-Valverde, M. (2019). Evaluación de cámaras de recuento sobre parámetros espermáticos de verracos analizados con un sistema CASA-Mot. Agronomía Mesoamericana, 30(2), 447–458. https://doi.org/10.15517/am.v30i1.34145
Valverde, A., Madrigal-Valverde, M., Caldeira, C., Bompart, D., Núñez de Murga, J., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analyzed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320
Valverde, A., Madrigal-Valverde, M., Lotz, J., Bompart, D., & Soler, C. (2019). Effect of video capture time on sperm kinematic parameters in breeding boars. Livestock Science, 220. https://doi.org/10.1016/j.livsci.2018.12.008
Valverde, A., Madrigal, M., Caldeira, C., Bompart, D., de Murga, J. N., Arnau, S., & Soler, C. (2019). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320
Vasilescu, S. A., Khorsandi, S., Ding, L., Bazaz, S. R., Nosrati, R., Gook, D., & Warkiani, M. E. (2021). A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-87046-9
Vasquez, E. S., Feugang, J. M., Willard, S. T., Ryan, P. L., & Walters, K. B. (2016). Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. Journal of Nanobiotechnology, 14(1), 1–9. https://doi.org/10.1186/S12951-016-0168-Y/FIGURES/6
Víquez, L., Barquero, V., Soler, C., Roldan, E. R. S., & Valverde, A. (2020). Kinematic Sub-Populations in Bull Spermatozoa: A Comparison of Classical and Bayesian Approaches. Biology, 9(6), 138. https://doi.org/10.3390/biology9060138
Víquez, L., Barquero, V., & Valverde, A. (2021). Optimal conditions for the kinematic analysis in fresh semen of Brahman bulls with a CASA-Mot system. Agronomía Mesoamericana, 32(3), 920–938. https://doi.org/10.15517/AM.V32I3.42768
Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., Simões, Z. L. P., Allsopp, M. H., Kandemir, I., De La Rúa, P., Pirk, C. W., & Webster, M. T. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics 2014 46:10, 46(10), 1081–1088. https://doi.org/10.1038/ng.3077
Williams, B. (1996). Descartes. El Proyecto de una investigación pura. Cátedra.
Wongtawan, T., Dararatana, N., Thongkittidilok, C., Kornmatitsuk, S., & Oonkhanond, B. (2020). Enrichment of bovine X-sperm using microfluidic dielectrophoretic chip: A proof-of- concept study. Heliyon, 6(11), e05483. https://doi.org/10.1016/J.HELIYON.2020.E05483
World Health Organization. (2021). World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th ed. In H. World Health Organization (Ed.), WHO Press (6th ed.). World Health Organization, Department of Reproductive Health and Research. https://www.who.int/publications/i/item/9789240030787
Xiao, S., & Xia, L. (2016). Quantity versus quality: the sperm war. Asian Journal of Andrology, 18(6), 900. https://doi.org/10.4103/1008-682X.185849
Yániz, J., Soler, C., Alquézar-Baeta, C., & Santolaria, P. (2017). Toward an integrative and predictive sperm quality analysis in Bos taurus. Animal Reproduction Science, 181, 108–114. https://doi.org/10.1016/j.anireprosci.2017.03.022
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Carles Soler, Anthony Valverde
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos morales de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución, no comercial y sin obra derivada de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista, no se puede hacer uso de la obra con propósitos comerciales y no se puede utilizar las publicaciones para remezclar, transformar o crear otra obra.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).