Resumen
El objetivo de este artículo es analizar si las diferencias individuales en capacidad de la memoria de trabajo e inteligencia fluida durante la edad preescolar predicen las calificaciones en las materias básicas al finalizar el primer año de escuela primaria. Para ello se aplicaron pruebas cognitivas a 132 estudiantes de preescolares públicos costarricenses, y posteriormente se solicitaron sus calificaciones al finalizar su primer año escolar. Dado que algunos estudios reportan diferencias de sexo en el desempeño académico, se realizaron pruebas de invarianza factorial y estructural como aspectos cuantitativos fundamentales para interpretar, adecuadamente, los resultados del presente estudio. Dichas pruebas estadísticas indicaron que las personas estudiantes fueron estadísticamente equivalentes en todos los parámetros del modelo. Posteriormente, en un modelo de ecuaciones estructurales que asumió invarianza factorial y estructural entre sexos se muestra que: a) diferencias individuales en capacidad de memoria de trabajo, pero no en inteligencia fluida, predicen las calificaciones en el primer año escolar; b) la capacidad de memoria de trabajo predice la inteligencia fluida; y c) las asignaturas de Matemática y Español, en comparación con las otras asignaturas, comparten aspectos que podrían estar asociados con la necesidad de decodificar simbologías. Así pues, los hallazgos del presente estudio proporcionan evidencias respecto a indicadores cognitivos tempranos que son fundamentales para el futuro desempeño escolar de esta población estudiantil. Asimismo, se muestra la equivalencia en la variación de estas habilidades respecto al sexo.
Citas
Ackerman, Phillip L., Beier, Margaret y Boyle, Mary. (2005). Working Memory and Intelligence: The Same or Different Constructs? Psychological Bulletin, 131(1), 30–60. doi: 10.1037/0033-2909.131.1.30
Adams, Thomasenia. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 786–795.
Akaike, Hirotsugu. (1973). Information theory and an extension of the maximum likelihood principle. En Boris N. Petrov y Frigyes Csaki (Eds.), Second International Symposium on Information Theory (pp. 267 – 281). Budapest: Akademia Kiado.
Alloway, Tracy y Alloway, Ross. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. doi: 10.1016/j.jecp.2009.11.003
Archibald, Sara y Kerns, Kimberly. (1999). Identification and description of new test of executive functioning in Children. Child Neuropsychology, 5(2), 115-129. doi: 10.1076/chin.5.2.115.3167
Bentler, Peter. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246. doi: 10.1037/0033-2909.107.2.238
Bozdogan, Hamparsum. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370. doi: 10.1007/BF02294361
Brackett, Marc, Floman, James, Ashton-James, Claire, Cherkasskiy, Lillia y Salovey, Peter. (2013). The influence of teacher emotion on grading practices: A preliminary look at the evaluation of student writing. Teachers and Teaching, 19(6), 634-646. doi: 10.1080/13540602.2013.827453
Cain, Kate, Oakhill, Jane y Bryant, Peter. (2004). Children’s Reading Comprehension Ability: Concurrent Prediction by Working Memory, Verbal Ability, and Component Skills. Journal of Educational Psychology, 96(1), 31-42. doi: 10.1037/0022-0663.96.1.31
Cattell, Raymond, y Cattell, Karen. (2005). Test de Factor “g” Escala 1. Manual (5ta ed.). Madrid: TEA.
Cheung, Gordon y Rensvold, Roger. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233-255. doi:10.1207/S15328007SEM0902_5
Chuderski, Adam. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 41(4), 244–262. doi:10.1016/j.intell.2013.04.003
Cole, Elizabeth R. (2009). Intersectionality and research in psychology. American Psychologist, 64, 170-180. Recuperado de http://dx.doi.org/10.1037/a0014564
Colom, Roberto, Abad, Francisco, Quiroga, María de los Angeles, Shih, Pei Chun y Flores-Mendoza, Carmen. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584-606. doi:10.1016/j.intell.2008.01.002
Colom, Roberto, Escorial, Sergio, Shih, Pei Chun y Privado, Jesús. (2007). Fluid intelligence, memory span, and temperament difficulties predict academic performance of young adolescents. Personality and Individual differences, 42(8), 1503-1514. doi:10.1016/j.paid.2006.10.023
Colom, Roberto, Flores-Mendoza, Carmen, y Rebollo, Irene. (2003). Working memory and intelligence. Personality and Individual Differences, 34(1), 33 – 39. doi: 10.1016/S0191-8869(02)00023-5
Colom, Roberto, Jung, Rex E. y Haier, Richard J. (2007). General intelligence and memory span: evidence for a common neuroanatomic framework. Cognitive Neuropsychology, 24(8), 867-878. doi: 10.1080/02643290701781557
Đapo, Nermin y Kolenović-Đapo, Jadranka. (2012). Sex differences in fluid intelligence: Some findings from Bosnia and Herzegovina. Personality and Individual Differences, 53(7), 811-815. doi: 10.1016/j.paid.2012.05.036
Davoudzadeh, Pega, McTernan, Melissa L. y Grimm, Kevin J. (2015). Early school readiness predictors of grade retention from kindergarten through eighth grade: A multilevel discrete-time survival analysis approach. Early Childhood Research Quarterly, 32, 183–192. doi: 10.1016/j.ecresq.2015.04.005
de Abreu, Pascale, Conway, Andrew R. y Gathercole, Susan E. (2010). Working memory and fluid intelligence in young children. Intelligence, 38(6), 552-561. doi:10.1016/j.intell.2010.07.003
Deary, Ian J., Strand, Steve, Smith, Pauline, y Fernandes, Cres. (2007). Intelligence and educational achievement. Intelligence, 35, 13–21. doi: 10.1016/j.intell.2006.02.001
Engle, Randall, Kane, Michael y Tuholski, Stephen. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. En Akira Miyake and Priti Shah (Eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (pp. 102-134). London: Cambridge Press. doi: 10.1017/CBO9781139174909.007
Engle, Randall W., Tuholski, Stephen W., Laughlin, James E. y Conway, Andrew R. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309-331.
Engle, Randall W. y Kane, Michael J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. En Brian Ross (Ed.), The Psychology of Learning and Motivation, 44, 145-199. New York: Elsevier.
Epskamp, Sasha. (2014). semPlot: Path diagrams and visual analysis of various SEM packages’ output. R package versión 1.0.1. [Software de computación]. Recuperado de http://CRAN.R-project.org/package=semPlot
Fernández, Andrés. (2016). Educación Preescolar en Costa Rica: Historia y situación actual (1860-2015). San José, Costa Rica: Ministerio de Educación Pública. Recuperado de www.mep.go.cr/indicadores_edu/BOLETINES/Preescolar.pdf
García, María de los Ángeles. (2012). Las funciones ejecutivas cálidas y el rendimiento académico (Tesis Doctoral). Universidad Complutense de Madrid, España. Recuperado de http://eprints.ucm.es/17102/1/T34030.pdf
Gathercole, Susan E. y Pickering, Susan J. (2000). Working memory deficits in children with low achievements in the national curriculum at seven years of age. British Journal of Educational Psychology, 70(2), 177–194. doi:10.1348/000709900158047
Gathercole, Susan, Pickering, Susan, Knight, Camilla y Stegmann, Zoe. (2004). Working memory skills and educational attainment: evidence from National Curriculum Assessments at 7 and 14 Years of Age. Applied Cognitive Psychology, 18(1), 1–16. doi 10.1002/acp.934
Geary, David C. (2007). An evolutionary perspective on learning disability in mathematics. Developmental Neuropsychology, 32(1), 471-519. doi: 10.1080/87565640701360924
Ginac, Gilles. (2014). Fluid intelligence shares closer to 60% of its variance with working memory capacity and is a better indicator of general intelligence. Intelligence, 47, 122–133. doi:10.1016/j.intell.2014.09.004
Giofrè, David, Mammarella y Cornoldi, Irene Cristina. (2013). The structure of working memory and how it relates to intelligence in children. Intelligence, 41(5), 396-406. doi:10.1016/j.intell.2013.06.006
Grasby, Katrina L., Coventry, William L., Byrne, Brian, Olson, Richard K. y Medland, Sarah E. (2016). Genetic and environmental influences on literacy and numeracy performance in Australian school children in Grades 3, 5, 7, and 9. Behavior genetics, 46(5), 627-648.
Guskey, Thomas. (2011). Five obstacles to grading reform. Effective Grading Practice, 69(3), 16-21.
Hyde, Janet Shibley. (2005). The gender similarities hypothesis. American psychologist, 60(6), 581.
Hyde, Janet Shibley. (2014). Gender similarities and differences. Annual review of psychology, 65, 373-398.
Jordan, Nancy C., Hanich, Laurie B. y Kaplan, David. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child development, 74(3), 834-850. doi: 10.1111/1467-8624.00571
Jöreskog, Karl G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 32, 443–482.
Kane, Michael J., Hambrick, David Z. y Conway, Andrew R. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 66–71. doi: 10.1037/0033-2909.131.1.66
Lakin, Join M. (2013). Sex differences in reasoning abilities: Surprising evidences that male-female ratios in the tails of the quantitative reasoning distributions have increased. Intelligence, 41, 263-274. doi: 10.1016/j.intell.2013.04.004
Lekholm, Alli Klapp y Cliffordson, Christina. (2008). Discrepancies between school grades and test scores at individual and school level: effects of gender and family background. Educational Research and Evaluation, 14(2), 181-199. doi: 10.1080/13803610801956663
Little, Todd D., Slegers, David W. y Card, Noel A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural equation modeling, 13(1), 59-72.
Lynn, Richard and Irwing, Paul. (2004). Sex differences on the progressive matrices: A meta-analysis. Intelligence, 32(5), 481-498. doi: 10.1016/j.intell.2004.06.008
McMillan, James, Myran, Steven y Workman, Daryl. (2002). Elementary Teachers` Classroom Assessment and Grading Practices. The journal of educational research, 95(4), 203-213. doi: 10.1080/00220670209596593
McQuade, Julia, Murray-Close, Dianna, Shoulberg, Erin y Hoza, Betsy. (2013). Working memory and social functioning in children. Journal of Experimental Child Psychology, 115(3), 422-435. doi:10.1016/j.jecp.2013.03.002
Miller, David I. y Halpern, Diane F. (2014). The new science of cognitive sex differences. Trends in cognitive sciences, 18(1), 37-45. doi: 10.1016/j.tics.2013.10.011
Ministerio de Educación Pública. (2017). Programas de estudio [Sitio web]. Recuperado de http://www.mep.go.cr/programa-estudio?keys=yterm_node_tid_depth=All
Ministerio de Educación Pública. (2009). Reglamento de Evaluación de los aprendizajes [Sitio web]. Recuperado de https://www.mep.go.cr/educatico/reglamento-de-evaluacion-de-los-aprendizajes-2009
Montero, Eliana, Villalobos, Jeanette y Valverde, Astrid. (2007). Factores institucionales, pedagógicos, psicosociales y sociodemográficos asociados al rendimiento académico en la Universidad de Costa Rica: Un análisis multinivel. Relieve, 13(2), 215-234. Recuperado de http://www.uv.es/relieve/v13n2/RELIEVEv13n2_5.pdf
Muñoz, Marco y Guskey, Thomas. (2015). Standards-based grading and reporting will improve education. Phi Delta Kappan, 96(7), 64-68.
Murillo, Marielos. (2013). El fracaso escolar en primer ciclo de la educación general básica costarricense. Área lectoescritura. Káñina, Revista Artes y Letras, 37(2), 137-158. doi: http://dx.doi.org/10.15517/rk.v37i2.11852
Nair, Sankaran, Czaja, Sara y Sharit, Joseph. (2007). A Multilevel Modeling Approach to Examining Individual Differences in Skill Acquisition for a Computer-Based Task. Journals of Gerontology: SERIES B, 62B(Special Issue I), 85–96. doi: 10.1093/geronb/62.special_issue_1.85
Nevo, Einat y Breznitz, Zvia. (2011). Assessment of working memory components at 6 years of age as predictors of reading achievements a year later. Journal of Experimental Child Psychology, 109(1), 73–90. doi: 10.1016/j.jecp.2010.09.010
Oberauer, Klaus, Süß, Heinz-Martin, Wilhelm, Oliver y Sander, Nicolas. (2007). Individual differences in working memory capacity and reasoning ability. En Andrew R.A. Conway, Christopher Jarrold, Michael J. Kane, Akira Miyake, y John N. Towse (Eds.), Variation in working memory (pp.49-75). New York: Oxford University Press.
Pornprasertmanit, Sunthud, Miller, Patrick, Schoemann, Alexander y Rosseel, Yves. (2014). semTools: Useful tools for structural equation modeling. R package versión 0.4-6 [Software de computación]. Recuperado de http://CRAN.R-project.org/package=semTools
Primi, Ricardo, Ferrão, María Eugenia y Almeida, Leandro. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20(5), 446-451. doi:10.1016/j.lindif.2010.05.001
R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing [Software de computación]. Vienna, Austria. Recuperado de https://www.R-project.org/
Rosseel, Yves. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36. doi: 10.18637/jss.v048.i02
Savage, Robert, Lavers, Natalie y Pillay, Vanitha. (2007). Working Memory and Reading Difficulties: What We Know and What We Don’t Know About the Relationship. Educational Psychology Review, 19(2), 185- 221. doi: 10.1007/s10648-006-9024-1
Schinske, J., y Tanner, Kimberly. (2014). Teaching more by grading less (or differently). Life Sciences Education, 13(2), 159-166. doi: 10.1187/cbe.CBE-14-03-0054
Steiger, James H. y Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
Swanson, Lee y Kim, Kenny. (2007). Working memory, short-term memory, and naming speed as predictors of children's mathematical performance. Intelligence, 35(2), 151–168. doi:10.1016/j.intell.2006.07.001
Thornton, Mark y Conway, Andrew. (2013). Working memory for social information: Chunking or domain-specific buffer? Neuroimage, 70, 233-239. doi:10.1016/j.neuroimage.2012.12.063
Unsworth, Nash, Fukuda, Keisuke, Awh, Edward y Vogel, Edward. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1–26. doi: 10.1016/j.cogpsych.2014.01.003
Voyer, Daniel, Voyer, Susan D. y Saint-Aubin, Jean. (2017). Sex differences in visual-spatial working memory: a meta-analysis. Psychonomic bulletin y review, 24(2), 307-334.
Voyer, Daniel y Voyer, Susan D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174.
Vugs, Brigitte, Hendriks, Marc, Cuperus, Juliane y Verhoeven, Ludo. (2014). Working memory performance and executive function behaviors in young children with SLI. Research in Developmental Disabilities, 35(1), 62–74. doi:10.1016/j.ridd.2013.10.022
Vukovic, Rose K. y Lesaux, Nonie K. (2013). The relationship between linguistic skills and arithmetic knowledge. Learning and Individual Differences, 23, 87-91. doi. 10.1016/j.lindif.2012.10.00
Weldon, Rebeca, Mushlin, Harry, Kim, Bia y Sohn, Myeong-Ho. (2013). The effect of working memory capacity on conflict monitoring. Acta Psychologica, 142(1), 6-14. doi: 10.1016/j.actpsy.2012.10.002
Wentzel, Kathryn R. (1991). Relations between social competence and academic achievement in early adolescence. Child development, 62(5), 1066-1078.
Comentarios
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2018 Actualidades Investigativas en Educación