Abstract
Over the years, technological advancements have led to rapid growth of smart environments (offices, homes, cities, etc.). The increase of intelligent environments suggests the interconnectivity of applications and the use of the Internet. For this reason, arise what is known as the Internet of Things (IoT). The expansion of the IoT concept gives access to the Internet of Nano Things (IoNT). A new communication networks paradigm based on nanotechnology and IoT, in other words, a paradigm with the capacity to interconnect nano-scale devices through existing networks. This new paradigm so-called IoNT is presented to the world as an option for various fields of application. Therefore, new challenges and research opportunities have arisen. Consequently, this work aims to investigate state of the art and analyze trends for the use of IoNT, its application and future challenges in different fields of social interest, because IoNT is presented as an option for research with the capacities needed to get involved in many fields of social welfare. It is concluded that technologies prevail current IoNT literature, applications are focused on health care, and there is no international standardization regarding privacy, security or architecture of nano-networks.
References
Afsharinejad, A., Davy, A., Jennings, B., & Brennan, C. (2016). Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet of Things Journal, 3(1), 59–69. doi: https://doi.org/10.1109/JIOT.2015.2463685
Akkari, N., Wang, P., Jornet, J., Fadel, E., Elrefaei, L., Ghulam, M., Akyildiz, I. F. (2016). Distributed Timely Throughput Optimal Scheduling for the Internet of Nano-Things. IEEE Internet of Things Journal, 3(6), 1202–1212. doi: https://doi.org/10.1109/JIOT.2016.2573679
Akyildiz, I. F., Brunetti, F., & Blázzque, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279. doi: https://doi.org/10.1016/j.comnet.2008.04.001
Akyildiz, I. F., & Jornet, J. (2010a). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19. doi: https://doi.org/10.1016/j.nancom.2010.04.001
Akyildiz, I. F., & Jornet, J. (2010b). The Internet of nano-things. IEEE Wireless Communications, 17(6), 58–63. doi: https://doi.org/10.1109/MWC.2010.5675779
Akyildiz, I. F., Jornet, J., & Pierobon, M. (2011). Nanonetworks: A New Frontier in Communications. Communications of the ACM, 54(11), 84. doi: https://doi.org/10.1145/2018396.2018417
Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., & Koucheryavy, Y. (2015). The internet of Bio-Nano things. IEEE Communications Magazine, 53(3), 32–40. doi: https://doi.org/10.1109/MCOM.2015.7060516
Ali, N., & Abu-Elkheir, M. (2015). Internet of nano-things healthcare applications: Requirements, opportunities, and challenges. In 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications, (WiMob) (pp. 9–14). Abu-Dhabi, United Arab Emirate. doi: https://doi.org/10.1109/WiMOB.2015.7347934
Ali, N., Aleyadeh, W., & Abu-Elkhair, M. (2016). Internet of Nano-Things Network Models and Medical Applications. In Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 211–215). Paphos, Cyprus: IEEE. doi: https://doi.org/10.1109/IWCMC.2016.7577059
Atakan, B., & Akan, O. (2010). Carbon nanotube-based nanoscale ad hoc networks. IEEE Communications Magazine, 48(6), 129–135. doi: https://doi.org/10.1109/MCOM.2010.5473874
Balasubramaniam, S., Jornet, J., Pierobon, M., & Koucheryavy, Y. (2016). Guest editorial special issue on the internet of nano things. IEEE Internet of Things Journal, 3(1), 1–3. doi: https://doi.org/10.1109/JIOT.2016.2516838
Balasubramaniam, S., & Kangasharju, J. (2013). Realizing the internet of nano things: Challenges, solutions, and applications. Computer, 46(2), 62–68. https://doi.org/10.1109/MC.2012.389
Bhargava, K., Ivanov, S., & Donnelly, W. (2015). Internet of Nano Things for Dairy Farming. Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication - NANOCOM’ 15 (pp. 1–2). Boston, United States. doi: https://doi.org/10.1145/2800795.2800830
Britto, F., & Castro, G. (2012). Nanotecnología, hacia un nuevo portal científico-tecnológico. QuimicaViva, 11(3), 171–183. Retrieved from http://www.redalyc.org/articulo.oa?id=86325090003
Dabhi, K., & Maheta, A. (2017). Internet of Nano Things-The Next Big Thing. IJESC, 7(4), 10602–10604. Retrieved from http://ijesc.org
Djenouri, D., Khelladi, L., & Badache, N. (2005). A survey of security issues in mobile ad hoc and sensor networks. IEEE Communications Surveys Tutorials, 7(4), 2–28. doi: https://doi.org/10.1109/COMST.2005.1593277
Dressler, F., & Fischer, S. (2015). Connecting in-body nano communication with body area networks: Challenges and opportunities of the Internet of Nano Things. Nano Communication Networks, 6(2), 29–38. https://doi.org/10.1016/j.nancom.2015.01.006
Dressler, F., & Kargl, F. (2012a). Security in nano communication: Challenges and open research issues. In IEEE International Conference on Communications (pp. 6183–6187). Ottawa, Canada. doi: https://doi.org/10.1109/ICC.2012.6364977
Dressler, F., & Kargl, F. (2012b). Towards security in nano-communication: Challenges and opportunities. Nano Communication Networks, 3(3), 151–160. doi: https://doi.org/10.1016/j.nancom.2012.08.001
El-din, H., & Manjaiah, D. (2017). Internet of Nano Things and Industrial Internet of Things. In D. P. Acharjya & M. Kalaiselvi Geetha (Eds.), Internet of Things: Novel Advances and Envisioned Applications (Vol. 25, pp. 109–123). Berlin, Germany: Springer. doi: https://doi.org/10.1007/978-3-319-53472-5
Foladori, G., & Invernizz, N. (2006). La nanotecnología : una solución en busca de problemas. Comercio Exterior, 56(1), 326–334. Retrieved from http://revistas.bancomext.gob.mx/rce/magazines/90/5/Foladori.pdf
Gandino, F., Celozzi, C., & Rebaudengo, M. (2017). A Key Management Scheme for Mobile Wireless Sensor Networks. Applied Sciences, 7(5), 490. doi: https://doi.org/10.3390/app7050490
Gregori, M., & Akyildiz, I. F. (2010). A new NanoNetwork architecture using flagellated bacteria and catalytic nanomotors. IEEE Journal on Selected Areas in Communications, 28(4), 612–619. doi: https://doi.org/10.1109/JSAC.2010.100510
Hegg, M., & Lin, L. (2007). Nano-scale nanocrystal quantum dot photodetectors. In Conference on Lasers and Electro-Optics, 2007, CLEO 2007 (Vol. 2, pp. 10–11). Baltimore, MD, USA: IEEE. doi: https://doi.org/10.1109/CLEO.2007.4453119
Hung, H.-L., Hsu, H.-C., Shu, S.-L., & Wen, J.-H. (2012). On the performance of a rapid synchronization algorithm for IR-UWB receivers. Wireless Communications and Mobile Computing, (2012), 557–564. doi: https://doi.org/10.1002/wcm.2205
Jarmakiewicz, J., Parobczak, K., & Maslanka, K. (2016). On the Internet of Nano Things in healthcare network. In 2016 International Conference on Military Communications and Information Systems, ICMCIS. Brussels, Belgium. doi: https://doi.org/10.1109/ICMCIS.2016.7496572
Jornet, J., & Akyildiz, I. F. (2012a). The internet of multimedia Nano-Things. Nano Communication Networks, 3(4), 242–251. doi: https://doi.org/10.1016/j.nancom.2012.10.001
Jornet, J., & Akyildiz, I. F. (2012b). The Internet of Multimedia Nano-Things in the Terahertz Band. In European Wireless. Poznan, Polonia: VDE. Retrieved from http://ieeexplore.ieee.org/abstract/document/6216866/
Jornet, J., & Akyildiz, I. F. (2013). Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks. IEEE Journal on Selected Areas in Communications/Supplement, 31(12), 685–694. doi: https://doi.org/10.1109/JPROC.2013.2260115
Kalkan, K., & Levi, A. (2012). Key distribution scheme for peer-to-peer communication in mobile underwater wireless sensor networks. Peer-to-Peer Networking and Applications, 698–709. https://doi.org/10.1007/s12083-012-0182-2
Kaviani, B., Sadr, A., & Abrishamifar, A. (2008). Generation and detection of nano ultrasound waves with a multiple strained layer structure. Optical and Quantum Electronics, 40(8), 577–586. doi: https://doi.org/10.1007/s11082-008-9246-1
Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(TR/SE-0401), 28. doi: https://doi.org/10.1.1.122.3308
Liu, B., Lai, Y., & Ho, S.-T. (2010). High Spatial Resolution Photodetectors Based on Nanoscale Three-Dimensional Structures. IEEE Photonics Technology Letters, 22(12), 929–931. doi: https://doi.org/10.1109/LPT.2010.2047255
Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(May), 15511. doi: https://doi.org/10.1038/ncomms15511
Loscri, V., Marchal, C., Mitton, N., Fortino, G., & Vasilakos, A. (2014). Security and privacy in molecular communication and networking: Opportunities and challenges. In IEEE Transactions on Nanobioscience, 13(3), 198–207. doi: https://doi.org/10.1109/TNB.2014.2349111
Martínez, L. J. (2016). Cómo buscar y usar información científica. Guía para estudiantes universitarios 2016. Santander, España: Competencias Informáticas e Informacionales. Retrieved from http://eprints.rclis.org/29934/
Maynard, R. (2012). Nano-technology and nano-toxicology. Emerging Health Threats Journal, 5(1), 1–8. doi: https://doi.org/10.3402/ehtj.v5i0.17508
Miraz, M., Ali, M., Excell, P., & Picking, R. (2015). A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Internet Technologies and Applications, ITA 2015 (pp. 219–224). Wrexham, UK. doi: https://doi.org/10.1109/ITechA.2015.7317398
Nayyar, A., Puri, V., & Le, D.-N. (2017). Internet of Nano Things (IoNT): Next Evolutionary Step in Nanotechnology. Nanoscience and Nanotechnology, 7(1), 4–8. doi: https://doi.org/10.5923/j.nn.20170701.02
Observatorio Tecnológico, Instituto de Bioingeniería de Cataluña, & Fundació Hospital Universitari Vall d’Hebron– Institut de Recerca. (2016). Estudios de consultoría en el sector nanotecnológico: Benchmarking internacional (pp. 1-71). Ciudad Atónoma de Buenos Aires, Argentina: Mincyt. Retrieved from http://www.mincyt.gob.ar/adjuntos/archivos/000/046/0000046951.pdf
Parcerisa, L. (2009). Molecular communication options for long range nanonetworks. UPCommons. España: Universidad Politécnica de Catalunya. Retrieved from http://hdl.handle.net/2099.1/8361
Parcerisa, L., & Akyildiz, I. F. (2009). Molecular communication options for long range nanonetworks. Computer Networks, 53(16), 2753–2766. doi: https://doi.org/10.1016/j.comnet.2009.08.001
Rutherglen, C., & Burke, P. (2009). Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes. Small, 5(8), 884–906. doi: https://doi.org/10.1002/smll.200800527
Smith, R., Arca, A., Chen, X., Marques, L., Clark, M., Aylott, J., & Somekh, M. (2012). Design and fabrication of nanoscale ultrasonic transducers. Journal of Physics: Conference Series, 353(1), 012001. doi: https://doi.org/10.1088/1742-6596/353/1/012001
Sorkin, V., & Zhang, Y. W. (2011). Graphene-based pressure nano-sensors. Journal of Molecular Modeling, 17(11), 2825–2830. doi: https://doi.org/10.1007/s00894-011-0972-0
Stuerzebecher, L., Fuchs, F., Zeitner, U., & Tuennermann, A. (2015). High-resolution proximity lithography for nano-optical components. Microelectronic Engineering, 132, 120–134. doi: https://doi.org/10.1016/j.mee.2014.10.010
Takeuchi, N., & Mora, M. (2011). Divulgación y formación en nanotecnología en México. Mundo Nano, 4(2), 59–64. Retrieved from http://revistas.unam.mx/index.php/nano/article/view/44978/40539
Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things - A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274. doi: https://doi.org/10.1007/s10796-014-9489-2
Wu, Y., Lin, Y., Bol, A., Jenkins, K., Xia, F., Farmer, D., … Avouris, P. (2011). High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472(7341), 74–78. doi: https://doi.org/10.1038/nature09979
Záyago-Lau, E., & Foladori, G. (2010). La nanotecnología en México: un desarrollo incierto. Economía, Sociedad y Territorio, 10(32), 143–178. doi: https://doi.org/oa?id=11112509006